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In the previous works, some properties of the Hyper Darboux lines which are the 
generalized form of Darboux lines defined in 3- dimensional Euclid space were 
defined in Riemannian and Kaehlerian space [6], [7]. In this work, some 
properties of a Hyper Darboux line of various orders in GWA hyperspace of 

GWN+] space are obtained. In addition to this, a Hyper Darboux line of order zero 
inGW ,̂ hyperspace of GWII+] space is considered and the equations involving 
the second fundamental tensor of the subspace are deduced. 

1. INTRODUCTION 

An n- dimensional manifold GWn is said to be a generalized Weyl space i f it has an 
asymmetric conformal metric tensor g.. and asymmetric connection V' k satisfying the 
compatibility condition given by the equation 
VkS9 = 2rkgu ( l . i ) 

where Tk denotes a covariant vector field and Vk denotes the usual covariant derivative. 

Under a renormalization of the fundamental tensor of the form g - X2gij the covariant 

vector Tk is transformed by the law fk - Tk + dk hi X, where X is a scalar function defined on 

GWn. 

Let L j k denote the coefficients of the asymmetric connection V 4 . So, a generalized Weyl 

space is shortly written as GWn {Cjk,gy ,Tk). 

The main properties of GWn{Cjkigij,Tk) can be expressed as follows 

(1,3) 

Vkg^—2Tjj) (1.6) 
where g^ and g^ denote symmetric and antisymmetric part of gu, respectively. 
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The symmetric part of connection coefficients UJh are given as ([1], [2], [3]) 

i 
(1.7) 

where 
i 

are second kind Christoffel symbols defined by 

jk 

L 

2 * dxk 

(kr) »(>*) 
dxJ dxr 

(1.8) 

A quantity A is called a satellite of weight •[/?} of the tensor g.., i f it admits a transformation 
of the form 
A = X"A. (1.9) 
The prolonged covariant derivative of a satellite A of the tensor^, of weight [p] is defined 
by 

VkA = VkA-pTk A . (1.10) 

Let Cix' -x\s) be curve in GWn. The generalized covariant derivative along the curve 
C of the tensor field T is defined by 
o 
ST u 

1 7 = ^ v ' r ( U 1 ) 

where ^ are the components of the tangent vector of the curve C. 

The Frenet equations of C may be written as [4]. 

i s , 
= K{a$a+x) - ( a = U 2 , . . . , B ; K - ( 0 ) = J C w =0) (1.12) 

In the above equation = 2,...,n) denote the a - t h curvature of weight {-1} 

normalized by the condition 

& 4 ) i { « ) = 1 Cl-13) 

ofthecurve C and J C ^ (ar = l , . . . , n - l ) denote the a~th curvature of weight { - l jo f the 

curve C. 
Let an n-dimentional hypersurface GWn given by the equations 
ya = ya(x') i a - l,—»« + l ; i = l,2,...,n) be immersed in a generalized Weyl space GfVn+l. 
The prolonged covariant derivative of the satellite A, relative to G1VII+1 and GWn are related 
by 

V* A = xr

kVrA (1.14) 

where x7. = ~ - . 
* 3x 

The components of any vector C/ relative to Gfi^ + 1 and GiFn are related by 
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u a =x?ir. ( i . i 5 ) 

The prolonged covariant derivative xf is given by 

where w.. are the components of second fundamental form of GWn defined by 

and Ay are defined by 

4 = S ^ J ^ 4 ^ . (1.18) 

The components qa and p' of the first curvature vectors of the curve C:x' =x'(s) with 
respect to GWH+l and GWn are given by [5] 

• 

<f = ̂ f- - K(n)Na + A " + I"xa

b (1.19) 

where 

and are the components of intrinsic curvature vector of the curve C in the hypersurface 
defined by [5] 

t = A > * L & (1.21) 
as as 

The prolonged covariant derivative of the unit normal is given by 

VtNa=~g^c)wvBt (1-22) 

2.HYPER DARBOUX LINES OF ORDER H 

Let us take an n-dimensional GWn defined by the equations ya = ya(x') 

(a = l,...,n + l ; i - 1 , . . . , H ) which is immersed in a generalized Weyl Space GWn+i. 

Let us take C:x' -x'{s) which is a curve (not a geodesic of the enveloping space) of the 
hypersurface. 
The components and ^ are of the unit tangent vectors, of the principal normal 

vector and of the ( r - l ) - t h binormal vectors at every point of the curve, respectively. These 
vectors define an orthogonal system unit vectors at every point of the curve. We consider a 
congruence of curves given by unit vector field X in GWn+i as 

Aa=q''x;+rN" (2.1) 
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where N" are the components of the unit normal vector of the hyper space. 

Definition 2.1: I f the surface spanned by the vectors ^ and R{h+])^h^ + R(h+2) ^-£("+2) 

(R{a) = —!— and K , , is the curvature of the a - th order) contains the vector X". The curve 
K, (a) 

C is said to be a hyper D-line of order h (0 < h < (n +1) - 3). 

From this definition, for a hyper darboux line of order h we can write 

X" = p D fro , D ("+') E " (2.2) 

From (1.12) we have 

o2 en 

Ss2 5s ( r ) ¿ 5 

Using the (1.12) in this equation: 

(2.3) 

+~~ss~~^ + V ' ) ^ V o ? ) + ^ + 2 ) ^ 2 ) ) 
(2.4) 

5 K, 
+ ds ^ H ' ^ V ^ H ^ H 

This equation gives 

Ss2 * 
SR 

- 0 . (2.5) 
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Multiplying X" by g^L and g b / f 1 and using the last equation, we get 
— 1 ! — os 

-
 1

 ' (A) 

,2 .2 

— os (A)
 W 

and using the definition X^ = gabX"^ we obtain 

~
 ( Z 8 ) 

and 
. 2 

*(*) + *f*+l) ) + V>) + V>} V ' ) V*) = 0* 

The above equation is valid for h = 3,....,(« + l ) - 3 . 
In the case of h = 2 it is written as 

(2.9) 

and so 

In the case of h = 1 it can be written that 
.2 .2 .2 

and so 

In the case of h = 0 it can be written that 

and so 
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These equations show the hyper D-lines of various orders. 
Theorem 2.1: I f the congruence X" is along the / i - t l i binormal of a curve then the 

necessary and sufficient to be a hyper D-line of order h is its being a curve of constant 
(/i + l ) - t h curvature. 

Proof: Let the congruence X" is along the A - t h binormal ^ h + x^ of a curve. That is 

X" = c • , where c is a constant. From the equations (2.6) and (2.8), we get 

and so, X^ -cS}' 

I f this curve is a hyper D-line of order h, from (2.9) it is 
* 

V ) W o " Vo "7T ~ V K'<>+4+o)+ 

d s

t (2.17) 

¿ 5 V*) VO V*) " U 

From the last equation, it is found that 

V O = c o n s t ( 2- 1 8) 

Conversely, i f the Aj A + 1 j i s a constant then X^—^--0 may be written and the equation 

(2.9) is satisfied and so, the curve is a hyper D-line. 

Theorem 2.2: I f the congruence X" is along the {h — 2) th binormal ^ h_^ of a curve then the 

necessary and sufficient condition to be a hyper D-line of order h{h>2} is its being a curve 
of constant h - th curvature. 

Proof: Let the congruence X" be along the ( A - 2 ) t h binormal ^ " M j of a curve. That is 

X" - c • , where c is a constant. From the equation (2.6) and (2.8), we get 

and so, X^ =c8f"x 

I f this curve is a hyper D-line of order h (h > 2) , it is 
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d \ (2.20) 

From (2.19) and the last equation, it is found that 

K^ = const. (2.21) 

5 K,H, 
Conversely, i f the *^is a constant then X^ 1 ' ~ 0 may be written and the equation 

is satisfied, and so, the curve is a hyper D-line. 

H Y P E R D-LINES 

A hyper D-line of order zero is called the hyper D-line of the hyperspace. This curve is 
represented by 

Theorem 3.1: I f the congruence lies along the first binormal ^ then the necessary and the 

sufficient condition that the curve be a hyper D- line is that it be the curve of zero torsion 

for0)-

Proof: Let the congruence X" be along the first binormal ^ of a curve. So, we have 

X" — c • -From the equations (2.6) and (2.8), we get 

^ (3-2) 
And so, X^ —cdf. 

I f this curve is a hyper D-line, it is 

From (3.2) and the last equation, it is found that ^ ^ 2 ) = ® • Since K^ & 0, K^ is equal to 

zero. 

5K([) 

Conversely, i f the fc^is zero then X^ = 0 may be written and the equation (3.1) is 

satisfied. And so, the curve is a hyper D-line. 
We shall deduce the equation involving the second fundamental tensors of the hypersurface. 
From (1.11) and (1.16) we get 
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8£_ 
5s 

= (pk+Ik)xt+(w^'^)N" 

where pk and /* are given by 

P* ik = 4?zJ> 
respectively , and the equation (3.6): 

(3.4) 

(3.5) 

6_J°_ 
5s2 

s(pm+r) 
8s +(pk+ik)4;zi-wijwkl??zkg- >x" + 

+ {pk(2w, + wik)?+Ik?wki + (Vk \N". 

By putting the last equation into the equation gab 8 r 
!jk 8s1 r = \o)SnbS 

8 £a 

8s2 
and using 

gabN"Nb =\ and g^N'xf =0 it is found that 
* 

5s 

+ r[wkjIk? + (Vk w^^e + (2wff + Wjl)pl?1 + 

We have the first two Frenet's formulae for the subspace 
8 ? 

(3.8) 

where and £™ are the principal and binormal vectors and K^ , K^ are the first and 

second curvatures with respect to the subspace. From the last equations, by using the fact 
k = g^*?=g*tf*:+rNa)? =gllbqi? = q we get 
{«) (°) 

8K 8pm _ 2 

and 

(3.9) 

8K, 

-q'wqw*??? +r[wkJIkij + (V* +wvpk^J+wljP^J+Wffp^] + 
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where and q^ are the projections of q1 in the directions and , respectively. This 

represents the hyper D-line of the subspace. The equations have been expressed in terms of 
the second fundamental tensors and the curvatures (of the curve) with respect to the subspace. 
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