ARITHMETICAL PROPERTIES OF THE VALUES OF SOME POWER SERIES WITH ALGEBRAIC COEFFICIENTS TAKEN FOR U_{m}-NUMBERS ARGUMENTS. ${ }^{1}$

Gülşen YILMAZ

Abstract

In this paper it is proved that the values of some gap series for U_{m}-numbers arguments are either a U-number of degree $\leq m$ or an element of a certain algebraic number field. In this work the method which is used by Oryan for Liouville numbers in [9] and [10] is extended to the $U_{m^{-}}$ numbers. This extended method is used first for the gap series with rational coefficients and then for the gap series with algebraic coefficients. Further by using the similar methods for the p-adic gap series the similar results are obtained. The obtained results in the work contains the theorems in [9], [10] as special cases.

INTRODUCTION

Mahler [5] divided in 1932 the complex numbers into four classes A, S, T, U as follows.

Let $P(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ be a polynomial with integer coefficients. The number $H(P)=\max \left\{\left|a_{n}\right|, \ldots,\left|a_{0}\right|\right\}$ is called the height of $P(x)$. Let ξ be a complex number and

$$
\omega_{n}(H, \xi)=\min \{|P(\xi)|: \text { degree of } P \leq n, H(P) \leq H, P(\xi) \neq 0\}
$$

where n and H are natural numbers. Let

$$
\omega_{n}(\xi)=\underset{H \rightarrow \infty}{\limsup } \frac{-\log \omega_{n}(H, \xi)}{\log H}
$$

and

$$
\omega(\xi)=\limsup _{n \rightarrow \infty} \frac{\omega_{n}(\xi)}{n}
$$

The inequalities $0 \leq \omega_{n}(\xi) \leq \infty$ and $0 \leq \omega(\xi) \leq \infty$ hold. From $\omega_{n+1}(H, \xi) \leq \omega_{n}(H, \xi)$ we get $\omega_{n+1}(\xi) \geq \omega_{n}(\xi)$. So $\omega(\xi)$ is either a non-zero finite number or positive infinity.

[^0]If for an index $\omega_{n}(\xi)=+\infty$, then $\mu(\xi)$ is defined as the smallest of them; otherwise $\mu(\xi)=+\infty$. So μ is uniquely determined and both of $\mu(\xi)$ and $\omega(\xi)$ cannot be finite. Therefore there are the following four possibilities for ξ. ξ is called

$$
\begin{array}{cc}
A \text { - number if } & \omega(\xi)=0, \mu(\xi)=\infty \\
S \text { - number if } & 0<\omega(\xi)<\infty, \mu(\xi)=\infty \\
T \text { - number if } & \omega(\xi)=\infty, \mu(\xi)=\infty \\
U \text { - number if } & \omega(\xi)=\infty, \mu(\xi)<\infty
\end{array}
$$

The class A is composed of all algebraic numbers. The transcendental numbers are divided into the classes $S, T, U . \quad \xi$ is called a U-number of degree $m(1 \leq m)$ if $\mu(\xi)=m$. U_{m} denotes the set of U-numbers of degree m. The elements of the subclass U_{1} are called Liouville numbers.

Koksma [3] set up in 1939 another classification of complex numbers. He divided them into four classes $A^{*}, S^{*}, T^{*}, U^{*}$. Let ξ be a complex number and

$$
\omega_{n}^{*}(H, \xi)=\min \{|\xi-\alpha|: \text { degree of } \alpha \leq n, H(\alpha) \leq H, \alpha \neq \xi\}
$$

where α is an algebraic number. Let

$$
\omega_{n}^{*}(\xi)=\limsup _{H \rightarrow \infty} \frac{-\log \left(H \omega_{n}^{*}(H, \xi)\right)}{\log H},
$$

and

$$
\omega^{*}(\xi)=\underset{n \rightarrow \infty}{\limsup } \frac{\omega_{n}^{*}(\xi)}{n}
$$

We have $0 \leq \omega_{n}^{*}(\xi) \leq \infty$ and $0 \leq \omega^{*}(\xi) \leq \infty$. If for an index $\omega_{n}^{*}(\xi)=+\infty$, then $\mu^{*}(\xi)$ is defined as the smallest of them; otherwise $\mu^{*}(\xi)=+\infty$. So μ^{*} is uniquely determined and both of $\mu^{*}(\xi)$ and $\omega^{*}(\xi)$ cannot be finite. There are the following four possibilities for ξ. ξ is called

$$
\begin{array}{cc}
A^{*}-\text { number if } & \omega^{*}(\xi)=0, \mu^{*}(\xi)=\infty, \\
S^{*}-\text { number if } & 0<\omega^{*}(\xi)<\infty, \mu^{*}(\xi)=\infty, \\
T^{*}-\text { number if } & \omega^{*}(\xi)=\infty, \mu^{*}(\xi)=\infty, \\
U^{*}-\text { number if } & \omega^{*}(\xi)=\infty, \mu^{*}(\xi)<\infty .
\end{array}
$$

ξ is called a U^{*}-number of degree $m(1 \leq m)$ if $\mu^{*}(\xi)=m$. The set of U^{*}-numbers of degree m is denoted by U_{m}^{*}.

Wirsing [12] proved that both classifications are equivalent, i.e. $A-, S-, T-, U-$ numbers are as same as $A^{*}-, S^{*}$-, T^{*}-, U^{*}-numbers. Moerover every U-mumber of degree m is also a U^{*}-number of degree m and conversely.

LeVeque [4] proved that the subclass U_{m} is not empty. Oryan [8] proved that a class of power series with algebraic coefficients take values in the subclass U_{m} for algebraic arguments under certain conditions. Zeren [13] obtained the similar results for the some gap series. Oryan [10] also proved that the values of some power series for the arguments from the set of Liouville numbers are U-numbers of degree $\leq m$.

Let p be a fixed prime number and $|\ldots|_{p}$ denotes the p-adic valuation of the set of rational numbers \mathbb{Q}. Furthermore let \mathbb{Q}_{p} denotes the all p-adic numbers over \mathbb{Q}.

Mahler [6] had a classification of p-adic numbers in 1934 as follows. Let

$$
P(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}
$$

be a polynomial with integer coefficients. The number

$$
H(P)=\max \left\{\left|a_{n}\right|, \ldots,\left|a_{0}\right|\right\}
$$

is called the height of P. Let ξ be a p-adic number and

$$
\omega_{n}(H, \xi)=\min \left\{|P(\xi)|_{p}: \text { degree of } P \leq n, H(P) \leq H, P(\xi) \neq 0\right\}
$$

where n and H are natural numbers. Let

$$
\omega_{n}(\xi)=\limsup _{H \rightarrow \infty} \frac{-\log \omega_{n}(H, \xi)}{\log H}
$$

and

$$
\omega(\xi)=\limsup _{n \rightarrow \infty} \frac{\omega_{n}(\xi)}{n}
$$

It is clear that $0 \leq \omega_{n}(\xi) \leq+\infty$ and $0 \leq \omega(\xi) \leq+\infty$ for $n \geq 1$. If for an index $\omega_{n}(\xi)=+\infty$, then $\mu(\xi)$ is defined as the smallest of them; otherwise $\mu(\xi)=+\infty$. So $\mu(\xi)$ is uniquely determined and both of $\omega(\xi)$ and $\mu(\xi)$ cannot be finite. Therefore there are the following four possibilities for p-adic ξ number. The p-adic number ξ is called

$$
\begin{array}{cc}
A \text { - number if } & \omega(\xi)=0, \mu(\xi)=\infty \\
S \text { - number if } & 0<\omega(\xi)<\infty, \mu(\xi)=\infty \\
T \text { - number if } & \omega(\xi)=\infty, \mu(\xi)=\infty \\
U \text { - number if } & \omega(\xi)=\infty, \mu(\xi)<\infty
\end{array}
$$

ξ is called a U-number of degree $m(1 \leq m)$ if $\mu(\xi)=m . \quad U_{m}$ denotes the set of U-numbers of degree m. The elements of the subclass U_{1} are called Liouville numbers.

The classification of complex numbers which is given by Koksma [3] can be carried over \mathbb{Q}_{p}.

Let ξ be a p-adic number and

$$
\omega_{n}^{*}(H, \xi)=\min \left\{|\xi-\alpha|_{p}: \text { degree of } \alpha \leq n, H(\alpha) \leq H, \alpha \neq \xi\right\}
$$

where n and H are natural numbers. Let

$$
\omega_{n}^{*}(\xi)=\underset{H \rightarrow \infty}{\operatorname{hmsup}} \frac{-\log \left(H \omega_{n}^{*}(H, \xi)\right)}{\log H}
$$

and

$$
\omega^{*}(\xi)=\underset{n \rightarrow \infty}{\limsup } \frac{\omega_{n}^{*}(\xi)}{n}
$$

The inequalities $0 \leq \omega_{n}^{*}(\xi) \leq \infty$ and $0 \leq \omega^{*}(\xi) \leq \infty$ hold. If for an index $\omega_{n}^{*}(\xi)=+\infty$, then $\mu^{*}(\xi)$ is defined as the smallest of them; otherwise $\mu^{*}(\xi)=+\infty$. So $\mu^{*}(\xi)$ is uniquely determined and both of $\mu^{*}(\xi)$ and $\omega^{*}(\xi)$ cannot be finite. There are the following four possibilities for ξ. The p-adic number ξ is called

$$
\begin{array}{cc}
A^{*} \text { - number if } & \omega^{*}(\xi)=0, \mu^{*}(\xi)=\infty, \\
S^{*} \text { - number if } & 0<\omega^{*}(\xi)<\infty, \mu^{*}(\xi)=\infty, \\
T^{*} \text { - number if } & \omega^{*}(\xi)=\infty, \mu^{*}(\xi)=\infty, \\
U^{*}-\text { number if } & \omega^{*}(\xi)=\infty, \mu^{*}(\xi)<\infty .
\end{array}
$$

ξ is called a U^{*}-number of degree $m(1 \leq m)$ if $\mu^{*}(\xi)=m$. The set of p-adic U^{*}-numbers of degree m is denoted by U_{m}^{*}.

Both classifications are equivalent, i.e. A-, S-, T-, U-numbers are as same as A^{*}-, S^{*}-, T^{*}-, U^{*}-numbers. Moreover every U-number of degree m is also a U^{*}-number of degree m and conversely. Oryan [8] proved that a class of power series with algebraic coefficients takes values in the class p-adic U_{m} for p-adic algebraic arguments. Zeren [13] obtained the similar results for the some gap series. Furthermore Oryan [9] proved that the values of some power series for the arguments from the set of p-adic Liouville numbers are p-adic U-numbers of degree $\leq m$.

LEMMAS

Lemma 1. Let $\alpha_{1}, \ldots, \alpha_{k}(k \geq 1)$ be algebraic numbers which belong to an algebraic number field K of degree g, η be an algebraic number and $F\left(y, x_{1}, \ldots, x_{k}\right)$ be a polynomial with integral coefficients so that its degree is at least one in y. Next assume that $F\left(\eta, \alpha_{1}, \ldots, \alpha_{k}\right)=0$. Then the degree of $\eta \leq d g$ and

$$
h(\eta) \leq 3^{2 d g+\left(\ell_{1}+\ldots+\ell_{k}\right) g} H^{g} h\left(\alpha_{1}\right)^{\ell_{1} g} \ldots h\left(\alpha_{k}\right)^{\ell_{k} g},
$$

where $h(\eta)$ is the height of $\eta, h\left(\alpha_{i}\right)(i=1,2, \ldots, k)$ is the height of $\alpha_{i}(i=1,2, \ldots, k)$, H is the maximum of the absolute values of coefficients of $F, \ell_{i}(i=1,2, \ldots, k)$ is the degree of F in $x_{i}(i=1,2, \ldots, k)$ and d is the degree of F in y. (O.S. IÇEN [2], p.25)

Lemma 2. Let α be an algebraic number of height h, then

$$
|\alpha| \leq h+1
$$

(Schneider, Th. [11], p.5, Hilfssatz 1)
Lemma 3. Let $\alpha_{1}, \ldots, \alpha_{k}(k \geq 1)$ be p-adic algebraic numbers in p-adic number field \mathbb{Q}_{p} of degree $g ; \eta$ be a p-adic algebraic number and $F\left(y, x_{1}, \ldots, x_{k}\right)$ be a polynomial with integral coefficients so that its degree is at least one in y. Next assume that $F\left(\eta, \alpha_{1}, \ldots, \alpha_{k}\right)=0$. Then the degree of $\eta \leq d g$ and

$$
h(\eta) \leq 3^{2 d g+\left(\ell_{1}+\ldots+\ell_{k}\right) g} H^{g} h\left(\alpha_{1}\right)^{\ell_{1} g} \ldots h\left(\alpha_{k}\right)^{\varepsilon_{k} g},
$$

where $h(\eta)$ is the height of $\eta, h\left(\alpha_{i}\right)(i=1, \ldots, k)$ is the height of $\alpha_{i}(i=1, \ldots, k)$, H is the maximum of the absolute values of coefficients of $F, \ell_{i}(i=1, \ldots, k)$ is the degree of F in $x_{i}(i=1, \ldots, k)$ and d is the degree of F in y. (Orhan Ş. İÇEN [2], p.25)

Lemma 4. Let $P(x)$ be a polynomial with integral coefficients, $\alpha \in \mathbb{Q}_{p}$ and $P(\alpha)=0$. Then

$$
|\alpha|_{p} \geq H(P)^{-1}
$$

where $H(P)$ is the height of $P(x)$. (J.F. Morrison [7], p.337)
Theorem (Baker). Let ξ be a real or complex number, $\chi>2$ and $\alpha_{1}, \alpha_{2}, \ldots$ be a sequence of distinct numbers in an algebraic number field K with field heights $H_{K}\left(\alpha_{1}\right), H_{K}\left(\alpha_{2}\right), \ldots$ such that for each i

$$
\begin{equation*}
\left|\xi-\alpha_{i}\right|<\left(H_{K}\left(\alpha_{i}\right)\right)^{-\chi} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{i \rightarrow \infty}{\limsup } \frac{\log H_{K}\left(\alpha_{i+1}\right)}{\log H_{K}\left(\alpha_{i}\right)}<+\infty . \tag{ii}
\end{equation*}
$$

Then ξ is either an S-number or a T-number. (Baker, A. [1], p.98, Theorem 1)

THEOREMS

Theorem 1. Let

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{k_{n}} x^{k_{n}} \quad\left(k_{n} \in \mathbb{Z}^{+}(n=0,1,2, \ldots) ; k_{0}<k_{1}<k_{2}<\ldots\right) \tag{1.1}
\end{equation*}
$$

be a series with non-zero rational coefficients $c_{k_{n}}=b_{k_{n}} / a_{k_{n}}\left(a_{k_{n}}, b_{k_{n}}\right.$ integers; $b_{k_{n}} \neq 0$, $a_{k_{n}}>0$ and $a_{k_{n}}>1$ for $n \geq N_{0}$) satisfying the following conditions

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{\log a_{k_{n+1}}}{\log a_{k_{n}}}=+\infty, \tag{1.2}\\
& \limsup _{n \rightarrow \infty} \frac{\log \left|b_{k_{n}}\right|}{\log a_{k_{n}}}<1 \tag{1.3}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log a_{k_{n}}}{k_{n}}=+\infty \tag{1.4}
\end{equation*}
$$

Furthermore let ξ be a U_{m}-number for which the following two properties hold.
$\left.1^{\circ}\right) \xi$ has an approximation with algebraic numbers α_{n} of degree m of an algebraic number field K so that the following holds for sufficiently large n

$$
\begin{equation*}
\left|\xi-\alpha_{n}\right|<\frac{1}{H\left(\alpha_{n}\right)^{n \omega(n)}} \quad\left(\lim _{n \rightarrow \infty} \omega(n)=+\infty\right) \tag{1.5}
\end{equation*}
$$

where $[K: \mathbb{Q}]=m$.
2°) There exist two real numbers δ_{1} and δ_{2} with $1<\delta_{1} \leq \delta_{2}$ and

$$
\begin{equation*}
a_{k_{n}}^{\delta_{1}} \leq H\left(\alpha_{k_{n}}\right)^{k_{n}} \leq a_{k_{n}}^{\delta_{2}} \tag{1.6}
\end{equation*}
$$

for sufficiently large n.
Then $f(x)$ converges for every complex number x and $f(\xi)$ is either a U.-number of degree $\leq m$ or an algebraic number of K.

Proof. 1) Since the sequence $\left\{a_{k_{n}}\right\}$ which satisfies the conditions above is strictly increasing for sufficiently large n, we have $\lim _{n \rightarrow \infty} a_{k_{n}}=+\infty$. Because from (1.2) we get $\log a_{k_{n+1}}>2 \log a_{k_{n}}>\log a_{k_{n}}$
for $n \geq N_{1} \geq N_{0}$. Hence $a_{k_{n+1}}>a_{k_{n}}$, that is, the sequence $\left\{a_{k_{n}}\right\}$ is strictly increasing. Moreover,

$$
\log a_{k_{n}}>\log a_{k_{N_{1}}} 2^{n-N_{1}}
$$

for $n \geq N_{1}$. It holds $\lim _{n \rightarrow \infty} \log a_{k_{n}}=+\infty$, since $\lim _{n \rightarrow \infty} 2^{n}=+\infty$. Hence we get $\lim _{n \rightarrow \infty} a_{\text {Let }}=+\infty$.

$$
\theta:=\limsup _{n \rightarrow \infty} \frac{\log \left[b_{k_{n}}\right]}{\log a_{k_{n}}} .
$$

From (1.3) and from $\theta<\frac{1+\theta}{2}<1$, there exists a number $N_{2} \in \mathbb{N}$ such that

$$
\frac{\log \left|b_{k_{n}}\right|}{\log a_{k_{n}}}<\frac{1+\theta}{2}
$$

holds for $n \geq N_{2} \geq N_{1}$. Therefore we deduce

$$
\begin{equation*}
\left|b_{k_{n}}\right|<a_{k_{n}}^{\frac{1+\theta}{2}} \tag{1.7}
\end{equation*}
$$

Let x be a complex number. We can show by using the Ratio Test that $f(x)$ converges. Say

$$
f(x)=\sum_{n=0}^{\infty} c_{k_{n}} x^{k_{n}}=\sum_{n=0}^{\infty} u_{n}
$$

then from (1.2), (1.4) and (1.7) we have

$$
\left|\frac{u_{n+1}}{u_{n}}\right|=\left|\frac{\frac{b_{k_{n+1}}}{a_{k_{n+1}}} x^{k_{n+1}}}{\frac{b_{k_{n}}}{a_{k_{n}}} x^{k_{n}}}\right| \leq \frac{1}{a_{k_{n+1}}^{\varepsilon}}
$$

for a suitable $\varepsilon>0$. Therefore

$$
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=0<1 .
$$

Now we prove an inequality which we will use later. Let $A_{k_{n}}:=\left[a_{k_{0}}, a_{k_{1}}, \ldots, a_{k_{n}}\right]$ and η be a constant such that $0<\eta<1-\left(1 / \delta_{1}\right)$. We have the inequality

$$
\begin{equation*}
A_{k_{n}}<K_{0} a_{k_{n}}^{\frac{1}{1-\eta}} \tag{1.8}
\end{equation*}
$$

for $n \geq N_{3} \geq N_{2}$ where $K_{0}>1$ is a suitable constant. Because from (1.2) we have

$$
\frac{\log a_{k_{n+1}}}{\log a_{k_{n}}}>\frac{1}{\eta}
$$

for $n \geq N_{3} \geq N_{2}$ and so

$$
\begin{equation*}
a_{k_{n}}<a_{k_{n+1}}^{\eta} \tag{1.9}
\end{equation*}
$$

Let $K_{0}:=a_{k_{0}} a_{k_{1}} \ldots a_{k_{N_{3}-1}}$. From (1.9) it follows that

$$
\begin{aligned}
a_{k_{N_{3}}} & <a_{k_{N_{3}+1}}^{\eta}<a_{k_{n}}^{\eta^{n-N_{3}}} \\
a_{k_{N_{3}+1}} & <a_{k_{n}}^{\eta_{n}-N_{3}-1} \\
& \vdots \\
a_{k_{n-1}} & <a_{k_{n}}^{\eta}
\end{aligned}
$$

for $n \geq N_{3}$. So we have

$$
\begin{aligned}
A_{k_{n}} & \leq a_{k_{0}} a_{k_{1}} \ldots a_{k_{N_{3}-1}} a_{k_{N_{3}}} \ldots a_{k_{n}} \\
& \leq K_{0} a_{k_{n}}^{\eta^{n-N_{3}+\eta^{n-N_{3}-1}+\ldots+\eta+1}} \\
& <K_{0} a_{k_{n}+\ldots+\eta+1}^{\eta^{n}+\ldots+1} \\
& <K_{0} a_{k_{n}}^{1 /(1-\eta)}
\end{aligned}
$$

which is the inequality (1.8).
2) We consider the polynomials

$$
f_{n}(x)=\sum_{\nu=0}^{n} c_{k_{\nu}} x^{k_{\nu}} \quad(n=1,2,3, \ldots)
$$

Since

$$
f_{n}\left(\alpha_{k_{n}}\right)=\sum_{\nu=0}^{n} c_{k_{\nu}} \alpha_{k_{n}}^{k_{\nu}}=c_{k_{0}} \alpha_{k_{n}}^{k_{0}}+c_{k_{1}} \alpha_{k_{n}}^{k_{1}}+\ldots+c_{k_{n}} \alpha_{k_{n}}^{k_{n}} \in K
$$

we have $\left(f_{n}\left(\alpha_{k_{n}}\right)\right)^{\circ} \leq m$. Now we can determine an upper bound for the height of $f_{n}\left(\alpha_{k_{n}}\right)$. For this, we consider the polynomial

$$
F(y, x)=A_{k_{n}} y-\sum_{\nu=0}^{n} A_{k_{n}} c_{k \nu} x^{k_{\nu}}
$$

Since $F(y, x)$ is the polynomial with integral coefficients and

$$
\begin{aligned}
F\left(f_{n}\left(\alpha_{k_{n}}\right), \alpha_{k_{n}}\right) & =A_{k_{n}} f_{n}\left(\alpha_{k_{n}}\right)-\sum_{\nu=0}^{n} A_{k_{n}} c_{k_{\nu}} \alpha_{k_{n}}^{k_{\nu}} \\
& =A_{k_{n}} f_{n}\left(\alpha_{k_{n}}\right)-A_{k_{n}} \sum_{\nu=0}^{n} c_{k_{\nu}} \alpha_{k_{n}}^{k_{\nu}}=0
\end{aligned}
$$

applying Lemma 1 we have

$$
\begin{aligned}
H\left(f_{n}\left(\alpha_{k_{n}}\right)\right) & \leq 3^{2.1 \cdot m+k_{n} \cdot m} H(F)^{m} H\left(\alpha_{k_{n}}\right)^{k_{n} \cdot m} \\
& \leq 3^{3 k_{n} m}\left(A_{k_{n}} B_{k_{n}}\right)^{m} H\left(\alpha_{k_{n}}\right)^{k_{n} \cdot m}
\end{aligned}
$$

where $B_{k_{n}}:=\max _{\nu=0}^{n=0}\left\{\left|b_{k_{\nu}}\right|\right\}$. From (1.6) we get

$$
H\left(f_{n}\left(\alpha_{k_{n}}\right)\right) \leq 3^{3 k_{n} m}\left(A_{k_{n}} B_{k_{n}}\right)^{m} a_{k_{\mathrm{n}}}^{\delta_{2} m}
$$

Moreover we can write

$$
H\left(f_{n}\left(\alpha_{k_{n}}\right)\right) \leq c^{k_{n} m}\left(A_{k_{n}} B_{k_{n}}\right)^{m} a_{k_{n}}^{\delta_{2} m}
$$

where $c=3^{3}>1$ is a constant. Since the sequence $\left\{a_{k_{n}}\right\}$ is monotonically increasing and $\lim _{n \rightarrow \infty} a_{k_{n}}=+\infty$, it follows from (1.7)

$$
\begin{equation*}
B_{k_{n}} \leq a_{k_{n}}^{\frac{1+\theta}{2}} \tag{1.10}
\end{equation*}
$$

for $n \geq N_{4} \geq N_{3}$. From here using (1.8) we get

$$
\begin{aligned}
H\left(f_{n}\left(\alpha_{k_{n}}\right)\right) & \leq c^{k_{n} m} K_{0}^{m} a_{k_{n}}^{\frac{m}{1-\eta}} a_{k_{n}}^{\frac{1+\theta}{2} m} a_{k_{n}}^{\delta_{2} m} \\
& \leq c^{k_{n} m} K_{0}^{k_{n} m} a_{k_{n}}^{\left(\frac{1}{1-n}+\frac{1+}{2}+\delta_{2}\right) m} \\
& =\left(c^{\prime}\right)^{k_{n} m} a_{k_{n}}^{m \gamma}
\end{aligned}
$$

for $n \geq N_{4}$ where $c^{\prime}=c K_{0}>1$ and $\gamma=\frac{1}{1-\eta}+\frac{1+\theta}{2}+\delta_{2}$. From (1.4) we have

$$
\left(c^{\prime}\right)^{k_{n} m}=e^{k_{n} m \log c^{\prime}} \leq e^{m \log a_{k_{n}}}=a_{k_{n}}^{m}
$$

for $n \geq N_{5} \geq N_{4}$. Thus it holds for $n \geq N_{5}$

$$
\begin{equation*}
H\left(f_{n}\left(\alpha_{k_{n}}\right)\right) \leq a_{k_{n}}^{m \gamma^{\prime}} \tag{1.11}
\end{equation*}
$$

where $\gamma^{\prime}=1+\gamma$.
3) Since

$$
\begin{aligned}
\left|f(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right| & =\left|f(\xi)-f_{n}(\xi)+f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right| \\
& \leq\left|f(\xi)-f_{n}(\xi)\right|+\left|f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|
\end{aligned}
$$

we can determine an upper bound for $\left|f(\xi)-f_{n}(\xi)\right|$ and $\left|f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|$. The following equality holds.

$$
\begin{align*}
f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right) & =\sum_{\nu=0}^{n} c_{k_{\nu}} \xi^{k_{\nu}}-\sum_{\nu=0}^{n} c_{k_{\nu}} \alpha_{k_{n}}^{k_{\nu}} \tag{1.12}\\
& =\sum_{\nu=0}^{n} c_{k_{\nu}}\left(\xi^{k_{\nu}}-\alpha_{k_{n}}^{k_{\nu}}\right) \\
& =\sum_{\nu=0}^{n} c_{k_{\nu}}\left(\xi-\alpha_{k_{n}}\right)\left(\xi^{k_{\nu-1}}+\xi^{k_{\nu}-2} \alpha_{k_{n}}+\ldots+\alpha_{k_{n}}^{k_{\nu}-1}\right)
\end{align*}
$$

Moreover from (1.5) we have

$$
\left|\alpha_{k_{n}}\right| \leq|\xi|+1
$$

for $n \geq N_{6} \geq N_{5}$. Thus using (1.5) and (1.12) we get

$$
\begin{align*}
\left|f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right| & \leq\left|\xi-\alpha_{k_{n}}\right| \sum_{\nu=0}^{n}\left|c_{k_{\nu}}\right|\left|\xi^{k_{\nu}-1}+\xi^{k_{\nu}-2} \alpha_{k_{n}}+\ldots+\alpha_{k_{n}}^{k_{\nu}-1}\right| \tag{1.13}\\
& \leq H\left(\alpha_{k_{n}}\right)^{-k_{n} \omega\left(k_{n}\right)} \sum_{\nu=0}^{n}\left|c_{k_{\nu}}\right| k_{\nu}(|\xi|+1)^{k_{\nu}-1}
\end{align*}
$$

for $n \geq N_{5}$. Since

$$
\sum_{\nu=0}^{\pi}\left|c_{k_{\nu}}\right| k_{\nu}(|\xi|+1)^{k_{\nu}-1} \leq k_{n}^{2} B_{k_{n}}(|\xi|+1)^{k_{n}-1}
$$

using $\lim _{n \rightarrow \infty} \omega\left(k_{n}\right)=+\infty$, (1.4) and (1.10) we have

$$
k_{n}^{2} B_{k_{n}}(|\xi|+1)^{k_{n}-1} \leq \frac{1}{2} a_{k_{n}}^{\delta_{1} \frac{\mu\left(k_{n}\right)}{2}}
$$

for $n \geq N_{7} \geq N_{6}$. From this inequality, (1.6) and (1.13) it follows that

$$
\begin{aligned}
\left|f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right| & \leq \frac{1}{2} H\left(\alpha_{k_{n}}\right)^{-k_{n} \omega\left(k_{n}\right)} a_{k_{n}}^{\delta_{1} \omega\left(k_{n}\right) / 2} \\
& \leq \frac{1}{2} H\left(\alpha_{k_{n}}\right)^{-k_{n} \omega\left(k_{n}\right)} H\left(\alpha_{k_{n}}\right)^{k_{n} \omega\left(k_{n}\right) / 2} \\
& =\frac{1}{2} H\left(\alpha_{k_{n}}\right)^{-k_{n} \omega\left(k_{n}\right) / 2}
\end{aligned}
$$

for $n \geq N_{7}$. Thus using (1.6) and (1.11) we deduce that there exists a suitable sequence $\left\{\omega_{n}^{*}\right\}$ with $\lim _{n \rightarrow+\infty} \omega_{n}^{*}=+\infty$ and

$$
\begin{equation*}
\left|f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right| \leq \frac{1}{2} H\left(f_{n}\left(\alpha_{k_{n}}\right)\right)^{-\omega_{n}^{*}} \tag{1.14}
\end{equation*}
$$

for $n \geq N_{8} \geq N_{7}$.
4) Now we can determine an upper bound for $\left|f(\xi)-f_{n}(\xi)\right|$. We have

$$
\left|f(\xi)-f_{n}(\xi)\right|=\left|\sum_{\nu=1}^{\infty} c_{k_{n}} \xi^{k_{n+\nu}}\right| \leq \sum_{\nu=1}^{\infty} \frac{\left|b_{k_{n+\nu}}\right|}{a_{k_{n+\nu}}}|\xi|^{k_{n+\nu}}
$$

From (1.7) we get

$$
\frac{\left|b_{k_{n}}\right|}{a_{k_{n}}}<\frac{1}{a_{k_{n}}^{(1-\theta) / 2}}
$$

for $n \geq N_{6}$. Thus it follows

$$
\begin{aligned}
\left|f(\xi)-f_{n}(\xi)\right| & \leq \frac{\left|b_{k_{n+1}}\right|}{a_{k_{n+1}}}|\xi|^{k_{n+1}}+\frac{\left|b_{k_{n+2}}\right|}{a_{k_{n+2}}}|\xi|^{k_{n+2}}+\ldots \\
& <\frac{|\xi|^{k_{n+1}}}{a_{k_{n+1}}^{(1-\theta) / 2}}\left[1+\left(\frac{a_{k_{n+1}}}{a_{k_{n+2}}}\right)^{(1-\theta) / 2}|\xi|^{k_{n+2}-k_{n+1}}+\ldots\right]
\end{aligned}
$$

for $n \geq N_{8}$. Hence from $(1-\theta) / 2>0, \lim _{n \rightarrow \infty} \log a_{k_{n}}=+\infty$, (1.2) and (1.4) we have

$$
\left(\frac{a_{k_{n+1}}}{a_{k_{n+2}}}\right)^{(1-\theta) / 2}|\xi|^{k_{n+4}-k_{n+1}}<\frac{1}{2}
$$

\cdots

$$
\left(\frac{a_{k_{n+1}}}{u_{k_{n+1+\nu}}}\right)^{(1-\theta) / 2}|\xi|^{k_{n+1+\nu}-k_{n+1}}<\frac{1}{2^{\nu}}(\nu=1,2,3, \ldots)
$$

for $n \geq N_{9} \geq N_{8}$. So we get

$$
\begin{aligned}
\left|f(\xi)-f_{n}(\xi)\right| & \leq \frac{|\xi|^{k_{n+1}}}{a_{k_{n}+1}^{(1-\tilde{\sigma}) / 2}}\left[1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{\nu}}+\ldots\right] \\
& \leq \frac{2|\xi|^{k_{n+1}}}{a_{k_{n+1}}^{(1-0) / 2}}
\end{aligned}
$$

for $n \geq \Lambda_{9}$. From (1.4) we have

$$
4|\xi|^{k_{n+1}} \leq u_{k_{n+1}}^{(1-\theta) / 4}
$$

and

$$
\begin{equation*}
\left|f(\xi)-f_{n}(\xi)\right| \leq \frac{1}{2} a_{k_{n+1}}^{-(1-\theta) / 4} \tag{3.15}
\end{equation*}
$$

for $n \geq N_{10} \geq N_{9}$. We define now $s^{t}(n):=\left(\log a_{k_{n+1}} / \log a_{k_{n}}\right)$. From (1.2) $\lim _{n \rightarrow \infty} s^{\prime}(n)=+\infty$. Using (1.15) we have

$$
\left|f(\xi)-f_{n}(\xi)\right| \leq \frac{1}{2} a_{k_{n}}^{-s^{\prime}(n)(1-\theta) / 4}
$$

for $n \geq N_{10}$. Since $\lim _{n \rightarrow \infty} s^{\prime}(n)=+\infty$, from (1.11) we deduce that there exists a suitable sequence $\{s(n)\}$ with $\lim _{n \rightarrow \infty} s(n)=+\infty$ and

$$
\begin{equation*}
\frac{1}{2} a_{k_{n}}^{-s^{\prime}(n)(1-\theta) / 4} \leq \frac{1}{2} H\left(f_{n}\left(\alpha_{k_{n}}\right)\right)^{-s(n)} \tag{1.16}
\end{equation*}
$$

for $n \geq N_{11} \geq N_{10}$. Let now $\omega_{n}^{* *}:=\min \left\{s(n), \omega_{n}^{*}\right\}$ for $n \geq N_{11}^{*}$. So from (1.14) and (1.16) it follows that

$$
\begin{equation*}
\left|f(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right| \leq H\left(f_{n}\left(\alpha_{k_{n}}\right)\right)^{-\omega_{n}^{*}} \tag{1.17}
\end{equation*}
$$

for $n \geq N_{11}$ where $\lim _{n \rightarrow \infty} \omega_{n}^{* *}=+\infty$. If the sequence $\left\{f_{n}\left(\alpha_{k_{n}}\right)\right\}$ is constant then $f(\xi)$ is an algebraic number of K. Otherwise $f(\xi)$ is a U-number of degree $\leq m$.

Corollary . For $k_{n}=n$ and $m=1$ from Theorem 1 we obtain Theorem 1 in [10] as a special case.

Example. Let α be a constant algebraic number of degree m and c be an integer with $c>1$. We consider the number

$$
\xi=\sum_{n=0}^{\infty} \frac{1}{c^{(n!)^{2}}} \alpha^{n} .
$$

Because of Theorem 1 in [8] we know that ξ is a U_{m}-number. We consider now the algebraic numbers

$$
\alpha_{n}=\sum_{\nu=0}^{n} \frac{1}{\left(c^{\mu}\right)^{2}} \alpha^{\nu} \quad(n=1,2,3, \ldots) .
$$

From Lemma 1 we obtain

$$
H\left(\alpha_{n}\right) \leq c^{k(n!)^{2}},
$$

where $k>0$ is a constant. Furthermore we get

$$
\begin{aligned}
\left|\xi-\alpha_{n}\right| & \leq c^{-((n+1)!)^{2} \varepsilon} \quad(\varepsilon>0) \\
& \leq c^{-(n!)^{2}(n+1)^{2} \varepsilon} \\
& \leq\left(H\left(\alpha_{n}\right)\right)^{-\frac{(n+1)^{2} \varepsilon}{k}} \\
& \leq\left(H\left(\alpha_{n}\right)\right)^{-n \frac{(n+1)^{2} \varepsilon}{k n}}
\end{aligned}
$$

as we have done before. If $\omega_{n}=\frac{(n+1)^{2} \varepsilon}{k n}$ then $\omega_{\pi 1} \rightarrow \infty$ as $n \rightarrow \infty$. From here we have

$$
\begin{equation*}
\left|\xi-\alpha_{n}\right| \leq H\left(\alpha_{n}\right)^{-n \omega_{n}} \quad\left(\lim _{n \rightarrow \infty} \omega_{n}=+\infty\right) \tag{1.18}
\end{equation*}
$$

This is the condition (1.5). Let now choose the sequences $\left\{a_{n_{k}}\right\}$ and $\left\{b_{n_{k}}\right\}$ so that the conditions (1.2), (1.3), (1.4) and (1.6) are satisfied. We define now $f(x)$ suitably. The degrees of the terms of the sequence $\left\{\alpha_{n}\right\}$ are bounded. Therefore we can construct a subsequence $\left\{\alpha_{n_{k}}\right\}$ of this sequence so that the terms of this subsequence are different from each other and the sequence $\left\{H\left(\alpha_{n_{k}}\right)\right\}$ is strictly increasing. For this subsequence it holds

$$
\begin{equation*}
\underset{k \rightarrow \infty}{\limsup } \frac{\log H\left(\alpha_{n_{k+1}}\right)}{\log H\left(\alpha_{n_{k}}\right)}=+\infty \tag{1.19}
\end{equation*}
$$

Because if this limsup was finite, from (ii) in Baker's Theorem and from (1.18) the condition (i) would be satisfied and because of Baker's Theorem ξ would be an S number or a T-number. This would contradict the fact that ξ is a U_{m}-number. Hence (1.19) is true. On the other hand because of (1.19) there exists an index subsequence $\left\{n_{k_{j}}\right\}$ of the sequence $\left\{n_{k}\right\}$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\log H\left(\alpha_{n_{k_{j}}+1}\right)}{\log H\left(\alpha_{n_{k_{j}}}\right)}=+\infty \tag{1.20}
\end{equation*}
$$

Since $\left\{H\left(\alpha_{n_{k}}\right)\right\}$ is monotonically increasing, we have

$$
\frac{\log H\left(\alpha_{n_{k_{j}+1}}\right)}{\log H\left(\alpha_{n_{k_{j}}}\right)} \leq \frac{\log H\left(\alpha_{n_{k_{j+1}}}\right)}{\log H\left(\alpha_{n_{k_{j}}}\right)} .
$$

From here using (1.20) we get

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\log H\left(\alpha_{n_{k_{j+1}}}\right)}{\log H\left(\alpha_{n_{k_{j}}}\right)}=+\infty \tag{1.21}
\end{equation*}
$$

Let

$$
a_{n_{k_{j}}}:=H\left(\alpha_{n_{k_{j}}}\right) \left\lvert\,\left[\begin{array}{l}
{\left[\frac{n_{k_{i}}}{2}\right.}
\end{array}\right] \quad(j=1,2,3, \ldots)\right.
$$

where $\llbracket x \rrbracket$ denotes the integral part of x. For the sequence $\left\{a_{n_{k_{j}}}\right\}$ we show that the condition (1.6) is satisfied for $\delta_{1}=2, \delta_{2}=3$. It is clear that

$$
a_{n_{k_{j}}}^{2}=H\left(\alpha_{n_{k_{j}}}\right)\left[\left[^{n_{k_{k}}}\right]\right]^{2} \leq H\left(\alpha_{n_{k_{j}}}\right)^{n_{k_{j}}} \leq a_{n_{k_{j}}}^{3} .
$$

Because it holds

$$
\left|\left[\frac{n_{k_{j}}}{2}\right]\right| 2 \leq \frac{n_{k_{j}}}{2} 2=n_{k_{j}}
$$

and on the other hand

$$
\frac{n_{k_{j}}}{3} \leq \frac{n_{k_{j}}}{2}-1<\left|\left[\frac{n_{k_{j}}}{2}\right]\right|
$$

for $n_{k_{j}} \geq 6$. Thus we have

$$
n_{k_{j}} \leq 3\left|\left[\frac{n_{k_{j}}}{2}\right]\right|
$$

Now we show that the condition (1.2) is satisfied. From (1.21) we obtain

$$
\frac{\log a_{n_{k_{j+1}}}}{\log a_{n_{k_{j}}}}=\frac{\left.\| \frac{n_{k_{j+1}}}{2}\right] \log H\left(\alpha_{n_{k_{j+1}}}\right)}{\left[\frac{n_{k_{j}}}{2}\right] \log H\left(\alpha_{n_{k_{j}}}\right)} \rightarrow+\infty
$$

as $j \rightarrow \infty$, since

$$
\left.\left|\left[\frac{n_{k_{j+1}}}{2}\right]\right| \geq \left\lvert\, \frac{n_{k_{j}}}{2}\right.\right] \mid
$$

and $H\left(\alpha_{n_{k_{j}}}\right)$ is monotonically increasing to infinity as $j \rightarrow \infty$. Furthermore since

$$
\lim _{j \rightarrow \infty} \frac{\left.\left\lvert\, \frac{n_{k_{j}}}{2}\right.\right] \mid}{n_{k_{j}}}=\frac{1}{2}
$$

we obtain

$$
\lim _{j \rightarrow \infty} \frac{\log o_{n_{k_{j}}}}{n_{k_{j}}}=\operatorname{him}_{j \rightarrow \infty} \frac{\left.\left[\frac{n_{k_{j}}}{2}\right] \right\rvert\, \log H\left(\alpha_{n_{k_{j}}}\right)}{n_{k_{j}}}=+\infty
$$

From here we have the condition (1.4). For $b_{n_{k_{j}}}=1(j=0,1,2, \ldots)$ the condition (1.3) is satisfied. Thus the conditions of Theorem 1 are satisfied for ξ and

$$
f(x)=\sum_{j=0}^{\infty} \frac{1}{a_{n_{k_{j}}}} x^{n_{k_{j}}} .
$$

Therefore either $\mu(f(\xi)) \leq m$ or $f(\xi)$ belongs to K. Using the above ideas it is possible to construct many other ξ and $f(x)$ so that the conditions of Theorem 1 are satisfied.

Theorem 2. Let

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{\eta_{k_{n}}}{a_{k_{n}}} x^{k_{n}} \quad\left(k_{n} \in \mathbb{Z}^{+} \quad(n=0,1,2, \ldots) ; k_{0}<k_{1}<k_{2}<\ldots\right) \tag{2.1}
\end{equation*}
$$

be a series with non-zero algebraic integer $\eta_{k_{n}}(n=0,1,2, \ldots)$ of a number field K of degree q and with positive integers $a_{k_{n}}\left(a_{k_{n}}>1\right.$ for $\left.n \geq N_{0}\right)$ satisfying the following conditions

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log a_{k_{n+1}}}{\log a_{k_{n}}}=+\infty \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log H\left(\eta_{k_{n}}\right)}{\log a_{k_{n}}}<1 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log a_{k_{n}}}{k_{n}}=+\infty \tag{2.4}
\end{equation*}
$$

where $H\left(\eta_{k_{n}}\right)(n=0,1,2, \ldots)$ is the height of $\eta_{k_{n}}(n=0,1,2, \ldots)$. Furthermore let ξ be a U_{m}-number for which the following two properties hold.
$\left.1^{\circ}\right) \xi$ has an approximation with algebraic numbers α_{n} of degree m of an algebraic number field L so that the following holds for sufficiently large n

$$
\begin{equation*}
\left|\xi-\alpha_{n}\right|<\frac{1}{H\left(\alpha_{n}\right)^{n \omega(n)}} \quad\left(\lim _{n \rightarrow \infty} \omega(n)=+\infty\right) \tag{2.5}
\end{equation*}
$$

where $[L: \mathbb{Q}]=m$.
$\left.2^{\circ}\right)$ There exist two real numbers c_{1} and c_{2} with $1<c_{1} \leq c_{2}$ and

$$
\begin{equation*}
a_{k_{n}}^{c_{1}} \leq H\left(\alpha_{k_{n}}\right)^{k_{n}} \leq a_{k_{n}}^{c_{2}} \tag{2.6}
\end{equation*}
$$

for sufficiently large n. Let M be a smallest number field which contains K and L with $[M: \mathbb{Q}]=t$.

Then $f(x)$ converges for every complex number x and $f(\xi)$ is either a U-number of degree $\leq t$ or an algebraic number of M.

Proof . 1) Since the sequence $\left\{a_{k_{n}}\right\}$ which satisfies the conditions above is strictly increasing for sufficiently large n, we have $\lim _{n \rightarrow \infty} a_{k_{n}}=+\infty$. Because from (2.2) we have

$$
\log a_{k_{n+1}}>2 \log a_{k_{n}}>\log a_{k_{n}}
$$

for $n \geq N_{1} \geq N_{0}$. Hence $a_{k_{n+1}}>a_{k_{n}}$, that is, the sequence $\left\{a_{k_{n}}\right\}$ is strictly increasing. Moreover,

$$
\log a_{k_{n}}>\log a_{k_{N_{1}}} 2^{n-N_{1}}
$$

for $n \geq N_{1}$. It holds $\lim _{n \rightarrow \infty} \log a_{k_{n}}=+\infty$, since $\lim _{n \rightarrow \infty} 2^{n}=+\infty$. Thus we get $\lim _{n \rightarrow \infty} a_{k_{n}}=+\infty$.

Let

$$
\theta:=\limsup _{n \rightarrow \infty} \frac{\log H\left(\eta_{k_{n}}\right)}{\log a_{k_{n}}}
$$

From (2.3) and from $\theta<\frac{1+\theta}{2}<1$, there exists a number $N_{2} \in \mathbb{N}$ such that

$$
\frac{\log H\left(\eta_{k_{\mathrm{n}}}\right)}{\log a_{k_{\mathrm{n}}}}<\frac{1+\theta}{2}
$$

holds for $n \geq N_{2} \geq N_{1}$. Thus we deduce

$$
\begin{equation*}
H\left(\eta_{k_{n}}\right)<a_{k_{n}}^{\frac{1+\theta}{2}} \tag{2,7}
\end{equation*}
$$

for $n \geq N_{2}$. Applying Lemma 2 we have

$$
\begin{equation*}
\left|\eta_{k_{n}}\right| \leq H\left(\eta_{k_{n}}\right)+1 \leq 2 H\left(\eta_{k_{n}}\right)<2 a_{k_{n}}^{\frac{1+8}{2}} \tag{2.8}
\end{equation*}
$$

Let x be a complex number. We can show by using the Ratio Test that $f(x)$ converges. Say

$$
f(x)=\sum_{n=0}^{\infty} \frac{\eta_{k_{n}}}{a_{k_{n}}} x^{k_{n}}=\sum_{n=0}^{\infty} u_{n}
$$

then from (2.2), (2.4) and (2.8) we have

$$
\left|\frac{u_{n+1}}{u_{n}}\right| \leq \frac{1}{a_{k_{n+1}}^{\varepsilon_{0}}}
$$

for a suitable $\varepsilon_{0}>0$. Therefore

$$
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=0<1 .
$$

Now we prove an inequality which we will use later. Let $A_{k_{n}}:=\left[a_{k_{0}}, a_{k_{1}}, \ldots, a_{k_{n}}\right]$ and let η be a constant such that $0<\eta<1-\left(1 / c_{1}\right)$. We have the inequality

$$
\begin{equation*}
A_{k_{n}} \leq a_{k_{0}} \ldots a_{k_{n}} \leq a_{k_{n}}^{\varepsilon+\left(\frac{1}{1-n}\right)} \tag{2.9}
\end{equation*}
$$

for $n \geq N_{3} \geq N_{2}$ where $0<\varepsilon<c_{1}-1 /(1-\eta)$. From (2.2) we have

$$
\frac{\log a_{k_{n+1}}}{\log a_{k_{n}}}>\frac{1}{\eta}
$$

for $n \geq N_{3}$ and so

$$
\begin{equation*}
a_{k_{n}}<a_{k_{n+1}}^{\eta} \tag{2.10}
\end{equation*}
$$

Let $K_{0}:=a_{k_{0}} a_{k_{1}} \ldots a_{k_{N_{3}-1}}$. From (2.10) it follows

$$
\begin{aligned}
a_{k_{N_{3}}} & <a_{k_{N_{3}+2}}^{\eta}<a_{k_{n}}^{\eta^{n-N_{3}}} \\
a_{k_{N_{3}+1}} & <a_{k_{n}}^{\eta-N_{3}-2} \\
& \vdots \\
a_{k_{n-1}} & <a_{k_{n}}^{\eta}
\end{aligned}
$$

for $n \geq N_{3}$. Thus we have

$$
\begin{aligned}
A_{k_{n}} & \leq a_{k_{0}} a_{k_{1} \ldots a_{k_{N_{3}-1}}} a_{k_{N_{3}} \ldots a_{k_{n}}} \\
& \leq K_{0}^{\prime} a_{k_{n}}^{\eta^{n-N_{3}+\eta^{n-N_{3}-1}+\ldots+\eta+1}} \\
& <K_{0} a_{k_{n}}^{\eta^{n}+\ldots+\eta+1} \\
& <K_{0} a_{k_{n}}^{1 /(1-\eta)}
\end{aligned}
$$

for $n \geq N_{3}$. Since $\lim _{n \rightarrow \infty} a_{k_{n}}=+\infty$, it follows

$$
K_{0} \leq a_{k_{n}}^{\varepsilon}
$$

for sufficiently large n. Thus we have inequality (2.9).
2) We consider the polynomials

$$
f_{n}(x)=\sum_{\nu=0}^{n} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}} x^{k_{\nu}} \quad(n=1,2,3, \ldots)
$$

Let

$$
\gamma_{n}:=\sum_{\nu=0}^{n} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}} \alpha_{k_{n}}^{k_{\nu}}=f_{n}\left(\alpha_{k_{n}}\right)
$$

Since $\gamma_{n} \in M \quad(n=1,2,3, \ldots)$, we have $\left(\gamma_{n}\right)^{\circ} \leq t \quad(n=1,2,3, \ldots)$. Now we can determine an upper bound for the height of γ_{n}. For this, we consider the polynomial

$$
F\left(y, x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}\right)=A_{k_{n}} y-\sum_{\nu=0}^{n} \frac{A_{k_{n}}}{a_{k_{\nu}}} x_{\nu} x_{n+1}^{k_{\nu}}
$$

Since $F\left(y, x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}\right)$ is the polynomial with integral coefficients and

$$
\begin{aligned}
F\left(\gamma_{n}, \eta_{k_{0}}, \eta_{k_{1}}, \ldots, \eta_{k_{n}}, \alpha_{k_{n}}\right) & =A_{k_{n}} \gamma_{n}-\sum_{\nu=0}^{n} \frac{A_{k_{n}}}{a_{k_{\nu}}} \eta_{k_{\nu}} \alpha_{k_{n}}^{k_{\nu}} \\
& =A_{k_{n}} \gamma_{n}-A_{k_{n}} \sum_{\nu=0}^{n} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}} \alpha_{k_{n}}^{k_{\nu}}=0
\end{aligned}
$$

applying Lemma 1 we have

$$
H\left(\gamma_{n}\right) \leq 3^{2 . t .1+\left[(1+1+\ldots+1)+k_{n} j t\right.} H^{t} H\left(\eta_{k_{0}}\right)^{t} \ldots H\left(\eta_{k_{n}}\right)^{t} H\left(\alpha_{k_{n}}\right)^{k_{n} \cdot t}
$$

where H is the height of the polynomial $F\left(y, x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}\right), g=t, d=1$, $\ell_{0}=1, \ldots, \ell_{n}=1, \ell_{n+1}=k_{n}$. Since $H=\max _{\nu=0}^{n}\left\{A_{k_{n}}, \frac{A_{k_{n}}}{a_{k_{\nu}}}\right\}=A_{\lambda_{n}}$, using (2.6) we get

$$
\begin{aligned}
H\left(\gamma_{n}\right) & \leq 3^{2 t+3 k_{n} t} A_{k_{n}}^{t} H\left(\eta_{k_{0}}\right)^{t} \ldots H\left(\eta_{k_{n}}\right)^{t} H\left(\alpha_{k_{n}}\right)^{k_{n} \cdot t} \\
& \leq 3^{5 k_{n} t} A_{k_{n}}^{t} H\left(\eta_{k_{0}}\right)^{t} \ldots H\left(\eta_{k_{n}}\right)^{t} a_{k_{n}}^{c_{2} t}
\end{aligned}
$$

for $n \geq N_{3}$.
Let. $K_{1}:=H\left(\eta_{k_{0}}\right) \ldots H\left(\eta_{k_{N_{3}-1}}\right)$. From (2.7) it follows that

$$
\begin{aligned}
H\left(\eta_{k_{0}}\right) \ldots H\left(\eta_{k_{n}}\right) & \leq K_{1}\left(a_{k_{N_{3}}} \ldots a_{k_{n}}\right)^{(1+\theta) / 2} \\
& \leq K_{1}\left(a_{k_{0}} a_{k_{1}} \ldots a_{k_{n}}\right)^{(1+\theta) / 2}
\end{aligned}
$$

for $n \geq N_{3}$. Thus using (2.9) we have

$$
\begin{aligned}
& H\left(\gamma_{n}\right) \leq c^{k_{n} t} A_{k_{n}}^{t}\left(a_{k_{0}} a_{k_{1}} \ldots a_{k_{n}}\right)^{t(1+\theta) / 2} a_{k_{n}}^{c_{2} t} \\
& \leq c^{k_{n} t}\left(a_{k_{0}} a_{k_{1}} \ldots a_{k_{n}} t(1+\theta) / 2+t\right. \\
& c_{k_{n}}^{c_{2} t} \\
& \leq c^{k_{n} t} a_{k_{n}}^{[\varepsilon+(1 /(1-\eta))] t(1+\theta) / 2+t)} a_{k_{n}}^{2 t} \\
&=c^{k_{n} t} a_{k_{n}}^{k+(1 /(1-\eta)) \mid t(1+\theta) / 2+t)+c_{2} t} \\
&=c^{k_{n} t} a_{k_{n}}^{k_{n} t}
\end{aligned}
$$

where $\gamma=[\varepsilon+(1 /(1-\eta))][(1+\theta) / 2+1]+c_{2}$ and $c>1$ is a suitable constant. On the other hand from (2.4) we obtain

$$
c^{k_{n} t}=e^{k_{n} t \log c} \leq e^{t \log a_{k_{n}}}=a_{k_{n}}^{l}
$$

for $n \geq N_{4} \geq N_{3}$. Thus we have

$$
\begin{equation*}
H\left(\gamma_{n}\right) \leq a_{k_{n}}^{t \gamma^{\prime}} \tag{2.11}
\end{equation*}
$$

for $n \geq N_{4}$ where $\gamma^{\prime}=1+\gamma$.
3) Now we can determine an upper bound for $\left|f(\xi)-\gamma_{n}\right|$. Since

$$
\begin{aligned}
\left|f(\xi)-\gamma_{n}\right| & =\left|f(\xi)-f_{n}(\xi)+f_{n}(\xi)-\gamma_{n}\right| \\
& \leq\left|f(\xi)-f_{n}(\xi)\right|+\left|f_{n}(\xi)-\gamma_{n}\right|
\end{aligned}
$$

we must determine an upper bound for $\left|f(\xi)-f_{n}(\xi)\right|$ and $\left|f_{n}(\xi)-\gamma_{n}\right|$. We have

$$
\left|f(\xi)-f_{n}(\xi)\right|=\left|\sum_{\nu=n+1}^{\infty} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}} \xi^{k_{\nu}}\right| \leq \sum_{\nu=n+1}^{\infty} \frac{\left|\eta_{k_{\nu}}\right|}{a_{k_{\nu}}}|\xi|^{k_{\nu}}
$$

and from (2.8)

$$
\frac{\left|\eta_{k_{n}}\right|}{a_{k_{n}}} \leq \frac{2 a_{k_{n}}^{(1+\theta) / 2}}{a_{k_{n}}}=2 a_{k_{n}}^{(\theta-1) / 2}
$$

for $n \geq N_{4}$. Thus it follows that

$$
\begin{aligned}
\left|f(\xi)-f_{n}(\xi)\right| & \leq \sum_{\nu=n+1}^{\infty} \frac{\left|\eta_{k_{\nu}}\right|}{a_{k_{\nu}}}|\xi|^{k_{\nu}} \leq \sum_{\nu=n+1}^{\infty} 2 a_{k_{\nu}}^{(0-1) / 2}|\xi|^{k_{\nu}} \\
& =\frac{2}{a_{k_{n+1}}^{(1-0) / 2}}|\xi|^{k_{n+1}}+\frac{2}{a_{k_{n+2}}^{(1-0) / 2}|\xi|^{k_{n+2}}+\ldots} \\
& =\frac{2|\xi|^{k_{n+1}}}{a_{k_{n+1}}^{(1-\theta) / 2}}\left[1+\left(\frac{a_{k_{n+1}}}{a_{k_{n+2}}}\right)^{(1-\theta) / 2}|\xi|^{k_{n+2}-k_{n+1}}+\ldots\right]
\end{aligned}
$$

for $n \geq N_{4}$. Hence from $(1-\theta) / 2>0, \lim _{n \rightarrow \infty} \log a_{k_{n}}=+\infty$, (2.2) and (2.4) we can obtain

$$
\left(\frac{a_{k_{n+1}}}{a_{k_{n+1}+\mu}}\right)^{(1-\theta) / 2}|\xi|^{k_{n+1+\nu}-k_{n+1}}<\frac{1}{2^{\nu}}(\nu=1,2,3, \ldots)
$$

for $n \geq N_{5} \geq N_{4}$. From here we have

$$
\begin{aligned}
\left|f(\xi)-f_{n}(\xi)\right| & \leq \frac{2|\xi|^{k_{n+1}}}{a_{k_{n+1}}^{(1-\theta) / 2}}\left[1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{\nu}}+\ldots\right] \\
& \leq \frac{4|\xi|^{k_{n+1}}}{a_{k_{n+1}}^{(1-\theta) / 2}}
\end{aligned}
$$

for $n \geq N_{5}$. From (2.4) it follows that

$$
8|\xi|^{k_{n+1}} \leq a_{k_{n+1}}^{(1-\theta) / 4}
$$

and here also

$$
\begin{equation*}
\left|f(\xi)-f_{n}(\xi)\right| \leq \frac{1}{2} a_{k_{n+1}}^{-(1-\theta) / 4} \tag{2.12}
\end{equation*}
$$

for $n \geq N_{6} \geq N_{5}$. We define now $s^{\prime}(n):=\left(\log a_{k_{n+1}} / \log a_{k_{n}}\right)$. From (2.2) $\lim _{n \rightarrow \infty} s^{\prime}(n)=+\infty$. Using (2.12) we have

$$
\begin{equation*}
\left|f(\xi)-f_{n}(\xi)\right| \leq \frac{1}{2} a_{k_{n}}^{-s^{\prime}(n)(1-\theta) / 4} \tag{2.13}
\end{equation*}
$$

for $n \geq N_{6}$. Since $\lim _{n \rightarrow \infty} s^{\prime}(n)=+\infty$, from (2.11) we deduce that there exists a suitable sequence $\{s(n)\}$ with $\lim _{n \rightarrow \infty} s(n)=+\infty$ and

$$
\frac{1}{2} a_{k_{n}}^{-s^{\prime}(n)(1-\theta) / 4} \leq \frac{1}{2} H\left(\gamma_{n}\right)^{-s(n)}
$$

for $n \geq N_{7} \geq N_{6}$. From here using (2.13) we have

$$
\begin{equation*}
\left|f(\xi)-f_{n}(\xi)\right| \leq \frac{1}{2} H\left(\gamma_{n}\right)^{-s(n)} \tag{2.14}
\end{equation*}
$$

for $n \geq N_{7}$.
4) Now we can determine an upper bound for $\left.\mid f_{n}(\xi)-\gamma_{n}\right) \mid$. The following equalities hold.

$$
\begin{align*}
f_{n}(\xi)-\gamma_{n} & =\sum_{\nu=0}^{n} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}} \xi^{k_{\nu}}-\sum_{\nu=0}^{n} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}} \alpha_{k_{n}}^{k_{\nu}} \tag{2.15}\\
& =\sum_{\nu=0}^{n} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}}\left(\xi^{k_{\nu}}-\alpha_{k_{n}}^{k_{\nu}}\right) \\
& =\sum_{\nu=0}^{n} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}}\left(\xi-\alpha_{k_{n}}\right)\left(\xi^{k_{\nu}-1}+\xi^{k_{\nu}-2} \alpha_{k_{n}}+\ldots+\alpha_{k_{n}}^{k_{\nu}-1}\right) .
\end{align*}
$$

From (2.5) we have

$$
\left|\alpha_{k_{n}}\right| \leq|\xi|+1
$$

for $n \geq N_{8} \geq N_{7}$. Thus uslng (2.5) and (2.15) we get

$$
\begin{align*}
\left|f_{n}(\xi)-\gamma_{n}\right| & \leq\left|\xi-\alpha_{k_{n}}\right| \sum_{\nu=0}^{n} \frac{\left|\eta_{k_{\nu}}\right|}{a_{k_{\nu}}}\left|\xi^{k_{\nu}-1}+\xi^{k_{\nu}-2} \alpha_{k_{n}}+\ldots+\alpha_{k_{n}}^{k_{\nu}-1}\right| \tag{2.16}\\
& \leq H\left(\alpha_{k_{n}}\right)^{-k_{n} \omega\left(k_{n}\right)} \sum_{\nu=0}^{n} \frac{\left|\eta_{k_{\nu}}\right|}{a_{k_{\nu}}} k_{\nu}(|\xi|+1)^{k_{\nu}-1}
\end{align*}
$$

for $n \geq N_{8}$. Moreover we can obtain that

$$
\begin{equation*}
\sum_{\nu=0}^{n} \frac{\left|\eta_{k_{\nu}}\right|}{a_{k_{\nu}}} k_{\nu}(|\xi|+1)^{k_{\nu}-1} \leq k_{n}^{2} \beta_{k_{n}}(|\xi|+1)^{k_{n}-1} \tag{2.17}
\end{equation*}
$$

where $\beta_{k_{n}}:=\max _{\nu=0}^{n}\left|\eta_{k_{\nu}}\right|$. Since the sequence $\left\{a_{k_{n}}\right\}$ is monotonically increasing and $\lim _{n \rightarrow \infty} a_{k_{n}}=+\infty$, from (2.8) it follows that

$$
\beta_{k_{n}} \leq 2 a_{k_{n}}^{(1+\theta) / 2}
$$

for $n \geq N_{9} \geq N_{8}$. Thus we have

$$
k_{n}^{2} \beta_{k_{n}}(|\xi|+1)^{k_{n}-1} \leq 2 k_{n}^{2}(|\xi|+1)^{k_{n}-1} a_{k_{n}}^{(1+\theta) / 2}
$$

for $n \geq N_{9}$. From (2.16) and (2.17) we obtain that

$$
\left|f_{n}(\xi)-\gamma_{n}\right| \leq 2 H\left(\alpha_{k_{n}}\right)^{-k_{n} \omega\left(k_{n}\right)} k_{n}^{2}(|\xi|+1)^{k_{n}-1} a_{k_{n}}^{(1+\theta) / 2}
$$

for $n \geq N_{9}$. Then using (2.6) it follows that

$$
\begin{equation*}
\left|f_{n}(\xi)-\gamma_{n}\right| \leq \frac{2 k_{n}^{2}(|\xi|+1)^{k_{n}-1}}{a_{k_{n}}^{c_{1}\left(k_{n}\right)}\left(k_{n}\right)-(1+\sigma) / 2} \tag{2.18}
\end{equation*}
$$

for sufficiently large n. Using (2.4) and $\lim _{n \rightarrow \infty} \omega\left(k_{n}\right)=+\infty$ we deduce that there exists a suitable sequence $\left\{s^{\prime \prime}(n)\right\}$ with $\lim _{n \rightarrow \infty} s^{\prime \prime}(n)=+\infty$ and

$$
\begin{equation*}
\frac{2 k_{n}^{2}(|\xi|+1)^{k_{n}-1}}{U_{k_{n}}^{c_{1} \omega\left(k_{n}\right)-(1+\theta) / 2}} \leq \frac{1}{2}\left(a_{k_{n}}^{t \gamma^{\prime}}\right)^{-s^{\prime \prime}\langle(n)} \tag{2.19}
\end{equation*}
$$

for $n \geq N_{10} \geq N_{9}$. From (2.11), (2.18) and (2.19) we have

$$
\begin{equation*}
\left|f_{n}(\xi)-\gamma_{n}\right| \leq \frac{1}{2} H\left(\gamma_{n}\right)^{-s^{\prime \prime}(n)} \tag{2.20}
\end{equation*}
$$

for $n \geq N_{10}$. Let now' $s^{\prime \prime \prime}(n):=\min \left\{s^{\prime \prime}(n), s(n)\right\}$ for $n \geq N_{10}$. Thus from (2.14) and (2.20) it follows that

$$
\begin{equation*}
\left|f(\xi)-\gamma_{n}\right| \leq H\left(\gamma_{n}\right)^{-\mathrm{s}^{\prime \prime \prime}(n)} \tag{2.21}
\end{equation*}
$$

for $n \geq N_{10}$ where $\lim _{n \rightarrow \infty} s^{\prime \prime \prime}(n)=+\infty$.
If the sequence $\left\{\gamma_{n}\right\}$ is constant then $f(\xi)$ is an algebraic number of M. Otherwise $f(\xi)$ is a U-number of degree $\leq t$.
Corollary . For $k_{n}=n$ and $t=1$ from Theorem 2 we obtain Theorem 3 in [10] as a special case.

Example, Let α be a constant algebraic number of degree m and c be an integer with $c>1$. We consider the number

$$
\xi=\sum_{n=0}^{\infty} \frac{1}{c^{(n!)^{2}}} \alpha^{n} .
$$

Because of Theorem 1 in $[8] \xi$ is a U_{m}-number. We consider now the algebraic numbers

$$
\alpha_{n}=\sum_{\nu=0}^{n} \frac{1}{c^{\nu!)^{2}}} \alpha^{\nu} \quad(n=1,2,3, \ldots)
$$

From Lemma 1 we obtain

$$
H\left(\alpha_{n}\right) \leq c^{k(n!)^{2}}
$$

where $k>0$ is a constant. From the above we get

$$
\left|\xi-\alpha_{n}\right| \leq\left(H\left(\alpha_{n}\right)\right)^{-n \omega_{n}} \quad\left(\omega_{n}=\frac{(n+1)^{2} \varepsilon}{k n} \rightarrow \infty\right)
$$

This is the condition (2.5). We can now choose the sequence $\left\{a_{n_{k}}\right\}$ and $\left\{\eta_{n_{k}}\right\}$ so that the conditions (2.2), (2.3), (2.4) and (2.6) are satisfied. As in the example of Theorem 1 we can construct a subsequence $\left\{\alpha_{n_{k}}\right\}$ of the sequence $\left\{\alpha_{n}\right\}$ so that the terms of this subsequence are different from each other and for the sequence $\left\{H\left(\alpha_{n_{k_{j}}}\right)\right\}$ the conditions (1.19), (1.20) and (1.21) are satisfied.

Let

$$
a_{n_{k_{j}}}:=H\left(\alpha_{n_{k_{j}}}\right)\left[\begin{array}{|c|}
n_{k_{j}} \\
2
\end{array}\right] \quad(j=1,2,3, \ldots)
$$

and β be a constant algebraic integer of a number field K of degree q. If

$$
\eta_{n_{k_{j}}}=\beta^{n_{k_{j}}} \quad(j=1,2,3, \ldots)
$$

the conditions (2.2), (2.3), (2.4) and (2.6) are satisfied for $c_{1}=2, c_{2}=3$. So the conditions of Theorem 2 hold for ξ and

$$
f(x)=\sum_{j=0}^{\infty} \frac{\beta^{n_{k_{j}}}}{a_{n_{k_{j}}}} x^{n_{k_{j}}} .
$$

Therefore either $\mu(f(\xi)) \leq t$ or $f(\xi)$ belongs to a smallest number field which contains K and $\mathbb{Q}(\alpha)$.

Theorem 3 . In the p-adic field \mathbb{Q}_{p}, let

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{k_{n}} x^{k_{n}} \quad\left(k_{n} \in \mathbb{Z}^{+}(n=0,1,2, \ldots) ; k_{0}<k_{1}<k_{2}<\ldots\right) \tag{3.1}
\end{equation*}
$$

be a series with non-zero rational coefficients $c_{k_{n}}=b_{k_{n}} / a_{k_{n}} \quad\left(a_{k_{n}}, \quad b_{k_{n}}\right.$ integers; $b_{k_{n}} \neq 0, a_{k_{n}}>0,\left(a_{k_{n}}, b_{k_{n}}\right)=1$ and $a_{k_{n}}>1$ for $\left.n \geq N_{0}\right)$ satisfying the following conditions

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{u_{k_{n+1}}}{u_{k_{n}}}=+\infty, \tag{3.2}\\
0 \leq \limsup _{n \rightarrow \infty} \frac{\log _{p} A_{k_{n}} B_{k_{n}}}{u_{k_{n}}}<\infty \tag{3.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{u_{k_{n}}}{k_{n}}=+\infty \tag{3.4}
\end{equation*}
$$

where $\left|c_{k_{n}}\right|_{p}=p^{-u_{k_{n}}}, A_{k_{n}}=\left[a_{k_{0}}, a_{k_{1}}, \ldots, a_{k_{n}}\right], B_{k_{n}}=\max _{\nu=0}^{n}| | b_{k_{\nu}} \mid$. Furthermore let ξ be a p-adic U_{m}-number for which the following two properties hold.
$\left.1^{\circ}\right) \xi$ has an approximation with p-adic algebraic numbers α_{n} of degree m of a p-adic algebraic number field K so that the following holds for sufficiently large n.

$$
\begin{equation*}
\left|\xi-\alpha_{n}\right|_{p} \leq H\left(\alpha_{n}\right)^{-n \nu(n)} \quad\left(\lim _{n \rightarrow \infty} \omega(n)=+\infty\right), \tag{3.5}
\end{equation*}
$$

where $\{K: \mathbb{Q}\}=m$.
2°) There exist two real numbers δ_{1} and δ_{2} with $1<\delta_{1} \leq \delta_{2}$ and

$$
\begin{equation*}
p^{u_{k_{n}} \delta_{1}} \leq H\left(\alpha_{k_{n}}\right)^{k_{n}} \leq p^{u_{k_{n}} \delta_{2}} \tag{3.6}
\end{equation*}
$$

for sufficiently large n where $H\left(\alpha_{k_{n}}\right) \quad(n=0,1,2, \ldots)$ is the height of $\alpha_{k_{n}}$ ($n=0,1,2, \ldots$).

Then the radius of convergence of $f(x)$ is infinity and $f(\xi)$ is either a p-adic U number of degree $\leq m$ or a p-adic algebraic number of K.

Proof . 1) Since

$$
r=\frac{1}{\limsup _{k_{n} \rightarrow \infty} \sqrt[k_{n}]{\left|c_{k_{n}}\right|_{p}}}=\frac{1}{\limsup _{k_{n} \rightarrow \infty} p^{-\frac{u_{k}}{k_{n}}}}=\liminf _{k_{n} \rightarrow \infty} p^{\frac{v_{k}}{k_{n}}}=+\infty
$$

it follows that the radius of convergence of $f(x)$ is infinity. We consider the polynomials

$$
f_{n}(x)=\sum_{\nu=0}^{n} c_{k_{\nu}} x^{k_{\nu}}(n=1,2, \ldots)
$$

Since

$$
f_{n}\left(\alpha_{k_{n}}\right)=\sum_{\nu=0}^{n} c_{k_{\nu}} \alpha_{k_{n}}^{k_{\nu}}=c_{k_{0}} \alpha_{k_{n}}^{k_{0}}+c_{k_{1}} \alpha_{k_{n}}^{k_{1}}+\ldots+c_{k_{n}} \alpha_{k_{n}}^{k_{n}} \in K
$$

we have $\left(f_{n}\left(\alpha_{k_{n}}\right)\right)^{\circ} \leq m$. Now we can determine an upper bound for the height of $f_{n}\left(\alpha_{k_{n}}\right)$. For this, we consider the polynomial

$$
\dot{F}(y, x)=A_{k_{n}} y-\sum_{\nu=0}^{n} A_{k_{n}} c_{k_{\nu}} x^{k_{\nu}} .
$$

Since $F(y, x)$ is the polynomial with integral coefficients and

$$
F\left(f_{n}\left(\alpha_{k_{n}}\right), \alpha_{k_{n}}\right)=A_{k_{n}} f_{n}\left(\alpha_{k_{n}}\right)-\sum_{\nu=0}^{n} A_{i_{n}} c_{k_{\nu}} \alpha_{k_{n}}^{k_{v}}=0
$$

applying Lemma 3 we have

$$
\begin{aligned}
H\left(f_{n}\left(\alpha_{k_{n}}\right)\right) & \leq 3^{2 \cdot 1 \cdot m+k_{n} \cdot m} H(F)^{m} H\left(\alpha_{k_{n}}\right)^{k_{n} \cdot m} \\
& \leq 3^{3 k_{n} m}\left(A_{k_{n}} B_{k_{n}}\right)^{m} H\left(\alpha_{k_{n}}\right)^{k_{n} \cdot m}
\end{aligned}
$$

Thus using (3.6) we get

$$
H\left(f_{n}\left(\alpha_{k_{n}}\right)\right) \leq 3^{3 k_{n} m}\left(A_{k_{n}} B_{k_{n}}\right)^{m} p^{u_{k_{n}} \cdot m \cdot \delta_{2}} .
$$

Moreover we can write

$$
\begin{equation*}
H\left(f_{n}\left(\alpha_{k_{n}}\right)\right) \leq c_{1}^{k_{n} m}\left(A_{k_{n}} B_{k_{n}}\right)^{m} p^{u_{k_{n}} \cdot m, \delta_{2}} \tag{3.7}
\end{equation*}
$$

where $c_{1}>1$ is a constant.
Let $\theta:=\limsup _{n \rightarrow \infty} \frac{\log _{p} A_{k_{n}} B_{k_{n}}}{u_{k_{n}}}$. From (3.3) there exists a number $N_{1} \in \mathbb{N}$ such that

$$
\frac{\log _{p} A_{k_{n}} B_{k_{n}}}{u_{k_{n}}}<\frac{1+\theta}{2}
$$

for $n \geq N_{1} \geq N_{0}$. Thus we have

$$
\begin{equation*}
\left(A_{k_{n}} B_{k_{n}}\right)^{m}<p^{c_{2} u_{k_{n}}} \tag{3.8}
\end{equation*}
$$

for $n \geq N_{1}$ where $c_{2}=\frac{1+\theta}{2} m$. From (3.4) we obtain

$$
\begin{equation*}
c_{1}^{k_{n} m}=p^{k_{n} m \log _{p} c_{1}} \leq p^{m u_{k_{n}}} \tag{3.9}
\end{equation*}
$$

for $n \geq N_{2} \geq N_{1}$. Combining (3.7), (3.8) and (3.9) it follows that

$$
\begin{equation*}
H\left(f_{n}\left(\alpha_{k_{n}}\right)\right) \leq p^{c_{3} 3 k_{k_{n}}} \tag{3.10}
\end{equation*}
$$

for $n \geq N_{2}$ where $c_{3}=c_{2}+m+m \delta_{2}$.
2) It holds that

$$
\begin{align*}
\left|f(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|_{p} & =\left|f(\xi)-f_{n}(\xi)+f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|_{p} \tag{3.11}\\
& \leq \max \left\{\left|f(\xi)-f_{n}(\xi)\right|_{p},\left|f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|_{p}\right\}
\end{align*}
$$

We can determine an upper bound for $\left|f(\xi)-f_{n}(\xi)\right|_{p}$ and $\left|f_{n}(\xi)-f_{n}\left(\alpha \alpha_{k_{n}}\right)\right|_{p}$. It holds

$$
\begin{aligned}
\left|f(\xi)-f_{n}(\xi)\right|_{p} & =\left|\sum_{\nu=n+1}^{\infty} c_{k_{\nu}} \xi^{k_{\nu}}\right|_{p} \\
& \leq \max \left\{\left|c_{k_{n+1}}\right|_{p}|\xi|_{p}^{k_{n+1}},\left|c_{k_{n+2}}\right|_{p}|\xi|_{p}^{k_{n+2}}, \ldots\right\}
\end{aligned}
$$

We can find an upper bound for $\left|c_{k_{n}} \xi^{k_{n}}\right|_{p}$ as follows

$$
\left|c_{k_{n}} \xi^{k_{n}}\right|_{p}=\left|c_{k_{n}}\right|_{p}|\xi|_{p}^{k_{n}}=p^{-u_{k_{n}}+k_{n} \log _{p} \mid \xi \xi_{p}}
$$

From (3.4) we have

$$
u_{k_{n}} / 2 \leq u_{k_{\mathrm{n}}}-k_{n} \log _{p}|\xi|_{p}
$$

and

$$
\left|c_{k_{n}} \xi^{k_{n}}\right|_{p} \leq p^{-u_{k_{n}} / 2}
$$

for $n \geq N_{3} \geq N_{2}$. According to (3.2), since the sequence $\left\{u_{k_{n}}\right\}$ is monotonically increasing for sufficiently large n we obtain

$$
\begin{equation*}
\left|f(\xi)-f_{n}(\xi)\right|_{p} \leq \max \left\{p^{-u_{k_{n+1}} / 2}, p^{-u_{k_{n+2}} / 2}, \ldots\right\}=p^{-u_{k_{n+1}} / 2} \tag{3.12}
\end{equation*}
$$

for $n \geq N_{4} \geq N_{3}$.
3) We have

$$
\begin{align*}
\left|f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|_{p} & =\left|\sum_{\nu=0}^{n} c_{k_{\nu}}\left(\xi^{k_{\nu}}-\alpha_{k_{n}}^{k_{\nu}}\right)\right|_{p} \leq \max _{\nu=0}^{n}\left|c_{k_{\nu}}\left(\xi^{k_{\nu}}-\alpha_{k_{n}}^{k_{\nu}}\right)\right|_{p} \tag{3.13}\\
& =\max _{\nu=0}^{n}\left\{\left|c_{k_{\nu}}\right|_{p}\left|\xi-\alpha_{k_{n}}\right|_{p}\left|\xi^{k_{\nu}-1}+\xi^{k_{\nu}-2} \alpha_{k_{n}}+\ldots+\alpha_{k_{n}}^{k_{\nu}-1}\right|_{p}\right\}
\end{align*}
$$

Since

$$
\left|\alpha_{k_{n}}\right|_{p}=\left|\xi-\left(\xi-\alpha_{k_{n}}\right)\right|_{p} \leq \max \left\{|\xi|_{p},\left|\xi-\alpha_{k_{n}}\right|_{p}\right\} \leq|\xi|_{p}+1
$$

for sufficiently large n, it follows that

$$
\left|\xi^{k_{\nu}-1}+\xi^{k_{\nu}-2} \alpha_{k_{n}}+\ldots+\alpha_{k_{n}}^{k_{\nu}-1}\right|_{p} \leq\left(|\xi|_{p}+1\right)^{k_{\nu}-1}
$$

Hence using (3.13) we get

$$
\left|f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|_{p} \leq \operatorname{miax}_{\nu=0}^{n}\left\{p^{-u_{k_{\nu}}}\right\}\left|\xi-\alpha_{k_{n}}\right|_{p}\left(|\xi|_{p}+1\right)^{k_{n}-i} .
$$

Since the sequence $\left\{u_{k_{n}}\right\}$ is monotonically increasing for $n \geq N_{4}, \max _{\nu=0}^{n}\left\{p^{-u_{k_{\nu}}}\right\}$ is bounded. Thus there exists a constant $c_{4}>0$ such that

$$
\left|f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|_{p} \leq c_{4}\left|\xi-\alpha_{k_{n}}\right|_{p}\left(|\xi|_{p}+1\right)^{k_{n}-1}
$$

for $n \geq N_{4}$. From (3.5) and (3.6) we have

$$
\begin{align*}
\left|f_{n}(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|_{p} & \leq c_{5}^{k_{n}} H\left(\alpha_{k_{n}}\right)^{-k_{n} \omega\left(k_{n}\right)} \tag{3.14}\\
& \leq c_{5}^{k_{n}} p^{-u_{k_{n}} \delta_{1} \omega\left(k_{n}\right)}
\end{align*}
$$

for $u \geq N_{4}$ where $c_{5}>0$ is a constant. Since $\lim _{n \rightarrow \infty} \omega\left(k_{n}\right)=+\infty$, from (3.2), (3.4) and (3.10) we deduce that there exist two suitable sequences $\left\{s_{n}^{\prime}\right\}$ and $\left\{s_{n}^{\prime \prime}\right\}$ with $\lim _{n \rightarrow \infty} s_{n}^{s}=+\infty, \lim _{n \rightarrow \infty} s_{n}^{n}=+\infty$,

$$
\begin{equation*}
p^{-u_{k_{n+1}} / 2} \leq H\left(f_{n}\left(\alpha_{k_{n}}\right)\right)^{-s_{n}^{\prime}} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{5}^{k_{n}} p^{-u_{k_{n}} \delta_{1} \omega\left(k_{n}\right)} \leq H\left(f_{n}\left(\alpha_{k_{n}}\right)\right)^{-s_{n}^{\prime \prime}} \tag{3.16}
\end{equation*}
$$

for $n \geq N_{5} \geq N_{4}^{r}$. Therefore from (3.11), (3.12) and (3.14) we obtain

$$
\begin{equation*}
\left|f(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|_{p} \leq \max \left\{p^{-u_{k_{n+1}} / 2}, c_{5}^{k_{n}} p^{-u_{k_{n}} \delta_{1} \omega\left(k_{n}\right)}\right\} \tag{3.17}
\end{equation*}
$$

for $n \geq N_{5}$. Thus combining (3.15), (3.16) and (3.17) we have

$$
\left|f(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|_{p} \leq \max \left\{H\left(f_{n}\left(\alpha_{k_{n}}\right)\right)^{-s_{n}^{\prime}}, H\left(f_{n}\left(\alpha_{k_{n}}\right)\right)^{-s_{n}^{\prime \prime}}\right\}
$$

for $n \geq N_{5}$. Let $s_{n}:=\min \left\{s_{n}^{\prime}, s_{n}^{\prime \prime}\right\}$. From the inequality above we get

$$
\left|f(\xi)-f_{n}\left(\alpha_{k_{n}}\right)\right|_{p} \leq H\left(f_{n}\left(\alpha_{k_{n}}\right)\right)^{-s_{n}}
$$

for $n \geq N_{5}$ where $\lim _{n \rightarrow \infty} s_{n}=+\infty$. If the sequence $\left\{f_{n}\left(\alpha_{k_{n}}\right)\right\}$ is not a constant sequence then $\mu(f(\xi)) \leq m$ for $f(\xi)$, that is, $f(\xi)$ is a p-adic U-number of degree $\leq m$. Otherwise $f(\xi)$ is a p-adic algebraic number of K.

Corollary. For $k_{n}=n$ and $m=1$ from Theorem 3 we obtain Theorem 1 in [9] as a special case.

Theorem 4 . In the p-adic field \mathbb{Q}_{p}, let

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{\eta_{k_{n}}}{a_{k_{n}}} x^{k_{n}} \quad\left(k_{n} \in \mathbb{Z}^{+}(n=0,1,2, \ldots) ; k_{0}<k_{1}<k_{2}<\ldots\right) \tag{4.1}
\end{equation*}
$$

be a series with non-zero p-adic algebraic integers $\eta_{k_{n}}(n=0,1,2, \ldots)$ of a p-adic number field K of degree q and with positive integers $a_{k_{n}}\left(a_{k_{n}}>1\right.$ for $\left.n \geq N_{0}\right)$, $\left|\eta_{k_{n}} / a_{k_{n}}\right|_{p}=p^{-t_{k_{n}}}$ and $A_{k_{n}}=\left[a_{k_{0}}, a_{k_{1}}, \ldots, a_{k_{n}}\right]$ satisfying the following conditions

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{t_{k_{n+1}}}{t_{k_{n}}}=+\infty \tag{4.2}\\
0 \leq \operatorname{hmsup} \tag{4.3}\\
n \rightarrow \infty \\
\frac{\log _{p} A_{k_{n}} H\left(\eta_{k_{n}}\right)}{t_{k_{n}}}<\infty
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{t_{k_{n}}}{k_{n}}=+\infty \tag{4.4}
\end{equation*}
$$

where $H\left(\eta_{k_{n}}\right)(n=0,1,2, \ldots)$ is the height of $\eta_{k_{n}}(n=0,1,2, \ldots)$. Furthermore ξ be a p-adic U_{m}-number for which the following two properties hold.
$\left.1^{\circ}\right) \xi$ has an approximation with p-adic algebraic numbers α_{n} of degree m of a p-adic number field L so that the following holds for sufficiently large n

$$
\begin{equation*}
\left|\xi-\alpha_{n}\right|_{p} \leq H\left(\alpha_{n}\right)^{-n \omega(n)} \quad\left(\lim _{n \rightarrow \infty} \omega(n)=+\infty\right) \tag{4.5}
\end{equation*}
$$

where $[L: \mathbb{Q}]=m$.
2°) There exist two real numbers c_{1} and c_{2} with $1<c_{1} \leq c_{2}$ and

$$
\begin{equation*}
p^{t_{k_{n}} c_{1}} \leq H\left(\alpha_{k_{n}}\right)^{k_{n}} \leq p^{t_{k_{n}} c_{2}} \tag{4.6}
\end{equation*}
$$

for sufficiently large n where $H\left(\alpha_{k_{n}}\right)(n=0,1,2, \ldots)$ is the height of $\alpha_{k_{n}}(n=$ $0,1,2, \ldots)$. Let M be a smallest number field which contain K and L with $[M: \mathbb{Q}]=t$.

Then the radius of convergence of $f(x)$ is infinity and $f(\xi)$ is either a p-adic U number of degree $\leq t$ or a p-adic algebraic number of M.

Proof . 1) It can be satisfied that the radius of convergence of $f(x)$ is infinity as Theorem 3. We consider the polynomials

$$
f_{n}(x)=\sum_{\nu=0}^{n} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}} x^{k_{\nu}} \quad(n=1,2, \ldots)
$$

Let

$$
\gamma_{n}:=f_{n}\left(\alpha_{k_{n}}\right)=\sum_{\nu=0}^{n} \frac{\eta_{k_{r}}}{a_{k_{\nu}}} \alpha_{k_{n}}^{k_{\nu}} .
$$

Since $\gamma_{n} \in M,\left(\gamma_{n}\right)^{\circ} \leq t(n=1,2, \ldots)$. We can now determine an upper bound for the height of γ_{n}. For this, we consider the polynomial

$$
F\left(y, x_{0} \cdot x_{1}, \ldots, x_{n}, x_{n+1}\right)=A_{k_{n}} y-\sum_{\nu=0}^{n} \frac{A_{k_{n}}}{a_{k_{\nu}}} x_{\nu} x_{n+1}^{k_{\nu}}
$$

Since $F\left(y, x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}\right)$ is the polynomial with integral coefficients and

$$
\begin{aligned}
F\left(\gamma_{n}, \eta_{k_{0}}, \eta_{k_{1}}, \ldots, \eta_{k_{n}}, \alpha_{k_{n}}\right) & =A_{k_{n}} \gamma_{n}-\sum_{\nu=0}^{n} \frac{A_{k_{n}}}{a_{k_{\nu}}} \eta_{k_{\nu}} \alpha_{k_{n}}^{k_{\nu}} \\
& =A_{k_{n}} \gamma_{n}-A_{k_{n}} \sum_{\nu=0}^{n} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}} \alpha_{k_{n}}^{k_{\nu}}=0,
\end{aligned}
$$

applying Lemma 3 we have

$$
H\left(\gamma_{n}\right) \leq 3^{2 . t .1+\left[(1+1+\ldots+1)+k_{n}\right]^{t}} H^{t} H\left(\eta_{k_{0}}\right)^{t} \ldots H\left(\eta_{k_{n}}\right)^{t} H\left(\alpha_{k_{n}}\right)^{k_{n} t}
$$

where H is the height of the polynomial $F\left(y, x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}\right), g=t, d=1$, $\ell_{0}=1, \ldots, \ell_{n}=1, \ell_{n+1}=k_{n}$. Since

$$
H=\max _{\nu=0}^{n}\left\{A_{k_{n}}, A_{k_{n}} / a_{k_{\nu}}\right\}=A_{k_{n}},
$$

using (4.6) we have

$$
\begin{align*}
H\left(\gamma_{n}\right) & \leq 3^{2 t+3 k_{n} t} A_{k_{n}}^{t} H\left(\eta_{k_{0}}\right)^{t} \ldots H\left(\eta_{k_{n}}\right)^{t} p^{t_{k_{n}} t c_{2}} \tag{4.7}\\
& \leq l_{0}^{k_{n} t} A_{k_{n}}^{t} H\left(\eta_{k_{0}}\right)^{t} \ldots H\left(\eta_{k_{n}}\right)^{t} p^{t_{k_{n}} t c_{2}}
\end{align*}
$$

for sufficiently large n where $l_{0}>0$ is a suitable constant. From (4.2) and (4.3) it follows

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{k_{n+1}} / \log _{p}\left(A_{k_{n}} H\left(\eta_{k_{n}}\right)\right)=+\infty \tag{4.8}
\end{equation*}
$$

for $n \geq N_{1} \geq N_{0}$. Since $\left|a_{k_{n+1}}\right|_{p} \leq 1$, from Lemma 4 we obtain

$$
H\left(\eta_{k_{n+1}}\right)^{-1} \leq\left|\eta_{k_{n+1}}\right|_{p} \leq\left.\left. p^{-t_{k_{n+1}}}\right|_{k_{k_{n+1}}}\right|_{p} \leq p^{-t_{k_{n+1}}}
$$

and from here

$$
t_{k_{n+1}} \leq \log _{p} H\left(\eta_{k_{n+1}}\right)
$$

Furthermore since $A_{k_{n}} \geq 1$, we can write

$$
\frac{t_{k_{n+1}}}{\log _{p}\left(A_{k_{n}} H\left(\eta_{k_{n}}\right)\right)} \leq \frac{\log _{p} H\left(\eta_{k_{n+1}}\right)}{\log _{p} H\left(\eta_{k_{n}}\right)} .
$$

Thus using (4.8) we obtain

$$
\lim _{n \rightarrow \infty} \frac{\log _{p} H\left(\eta_{k_{n+1}}\right)}{\log _{p} H\left(\eta_{k_{n}}\right)}=+\infty
$$

It is satisfied

$$
\begin{equation*}
H\left(\eta_{k_{n+1}}\right)^{\nu}>H\left(\eta_{k_{n}}\right) \tag{4.9}
\end{equation*}
$$

for $n \geq N_{2} \geq N_{1}$ where ν is a constant with $0<\nu<1 / 2$.
Let $K_{0}:=H\left(\eta_{k_{0}}\right) H\left(\eta_{k_{1}}\right) \ldots H\left(\eta_{k_{N_{2}-1}}\right)$. From (4.9) we have

$$
\begin{aligned}
H\left(\eta_{k_{N_{2}}}\right) & <H\left(\eta_{k_{N_{2}+1}}\right)^{\nu}<H\left(\eta_{k_{n}}\right)^{\nu^{n-N_{2}}} \\
H\left(\eta_{k_{N_{2}+1}}\right) & <H\left(\eta_{k_{n}} \nu^{\nu^{n-N_{2}-1}}\right. \\
& \vdots \\
H\left(\eta_{k_{n-1}}\right) & <H\left(\eta_{k_{n}}\right)^{\nu}
\end{aligned}
$$

for $n \geq N_{2}$. We also get

$$
\begin{aligned}
H\left(\eta_{k_{0}}\right) \ldots H\left(\eta_{k_{n}}\right) & \leq H\left(\eta_{k_{0}}\right) \ldots H\left(\eta_{k_{N_{2}-1}}\right) H\left(\eta_{k_{N_{2}}}\right) \ldots H\left(\eta_{k_{n}}\right) \\
& \leq K_{0} H\left(\eta_{k_{n}}\right)^{\nu^{n-N_{2}}+\nu^{n}-N_{2}-1}+\ldots+\nu+1 \\
& <K_{0} H\left(\eta_{k_{n}}\right)^{\nu^{n}+\ldots+\nu+1} \\
& <K_{0} H\left(\eta_{k_{n}}\right)^{1 / 1-\nu}<K_{0} H\left(\eta_{k_{n}}\right)^{2}
\end{aligned}
$$

for $n \geq N_{2}$. Combining this inequality with (4.7) it follows that

$$
\begin{align*}
H\left(\gamma_{n}\right) & \leq l_{0}^{k_{n} t} A_{k_{n}}^{t} K_{0}^{t} H\left(\eta_{k_{n}}\right)^{2 t} p^{t_{k_{n}} t c_{2}} \tag{4.10}\\
& \leq l_{1}^{k_{n} t}\left(A_{k_{n}} H\left(\eta_{k_{n}}\right)\right)^{2 t} p^{t_{k_{n}} t c_{2}}
\end{align*}
$$

where l_{1} is a constant with $l_{1}=l_{0} K_{0}>0$. From (4.4) we obtain

$$
\begin{equation*}
l_{1}^{k_{n} t}=p^{k_{n} t \log _{p} l_{1}} \leq p^{t_{k_{n}}} \tag{4.11}
\end{equation*}
$$

for $n \geq N_{3} \geq N_{2}$. On the other hand from (4.3) we have

$$
\begin{equation*}
A_{k_{\mathrm{n}}} H\left(\eta_{k_{n}}\right) \leq p^{t_{k_{n}} l_{2}} \tag{4.12}
\end{equation*}
$$

for $n \geq N_{4} \geq N_{3}$ where $l_{2}>0$ is a suitable constant. Combining (4.10),(4.11) and (4.12) it follows that

$$
\begin{equation*}
H\left(\gamma_{n}\right) \leq p^{t_{k_{n}}+2 t t_{2} t_{k_{n}}+t_{k_{n}} t c_{2}}=p^{t_{k_{n}} t_{3}} \tag{4.13}
\end{equation*}
$$

for $n \geq N_{4}$ where l_{3} is a constant with $l_{3}=1+t\left(2 l_{2}+c_{2}\right)$.
2) It holds

$$
\begin{align*}
\left|f(\xi)-\gamma_{n}\right|_{p} & =\left|f(\xi)-f_{n}(\xi)+f_{n}(\xi)-\gamma_{n}\right|_{p} \tag{4.14}\\
& \leq \max \left\{\left|f(\xi)-f_{n}(\xi)\right|_{p},\left|f_{n}(\xi)-\gamma_{n}\right|_{p}\right\}
\end{align*}
$$

We can determine an upper bound for $\left|\dot{f}(\xi)-f_{n}(\xi)\right|_{p}$ and $\left|f_{n}(\xi)-\gamma_{n}\right|_{p}$.

$$
\begin{aligned}
\left|f(\xi)-f_{n}(\xi)\right|_{p} & =\left|\sum_{\nu=n+1}^{\infty} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}} \xi^{k_{\nu}}\right|_{p} \\
& \leq \max \left\{\left|\frac{\eta_{k_{n+1}}}{a_{k_{n+1}}}\right|_{p}|\xi|_{p}^{k_{n+1}},\left|\frac{\eta_{k_{n+2}}}{a_{k_{n+2}}}\right|_{p}|\xi|_{p}^{k_{n+2}}, \ldots\right\}
\end{aligned}
$$

and

$$
\left|\frac{\eta_{k_{n}}}{a_{k_{n}}} \xi^{k_{n}}\right|_{p}=\left|\frac{\eta_{k_{n}}}{a_{k_{n}}}\right|_{p}|\xi|_{p}^{k_{n}}=p^{-t_{k_{n}}+k_{n} \log _{p}|\xi|_{p}}
$$

are hold. From (4.4) it follows that

$$
\frac{t_{k_{n}}}{2} \leq t_{k_{n}}-k_{n} \log _{p}|\xi|_{p}
$$

for $n \geq N_{5} \geq N_{4}$. So we have

$$
\left|\frac{\eta_{k_{n}}}{a_{k_{n}}} \xi^{k_{n}}\right|_{p} \leq p^{\frac{-t_{k_{n}}}{2}}
$$

for $n \geq N_{5}$. According to (4.2) since the sequence $\left\{t_{k_{n}}\right\}$ is monotonically increasing for sufficiently large n, we obtain

$$
\begin{equation*}
\left|f(\xi)-f_{n}(\xi)\right|_{p} \leq \max \left\{p^{-t_{k_{n+1}} / 2}, p^{-t_{k_{n+2}} / 2}, \ldots\right\}=p^{-t_{k_{n+1}} / 2} \tag{4.15}
\end{equation*}
$$

for $n \geq N_{6} \geq N_{5}$.
3) Furthermore it is clear that

$$
\begin{align*}
\left|f_{n}(\xi)-\gamma_{n}\right|_{p} & =\left|\sum_{\nu=0}^{n} \frac{\eta_{k_{\nu}}}{a_{k_{\nu}}}\left(\xi^{k_{\nu}}-\alpha_{k_{n}}^{k_{\nu}}\right)\right|_{p} \leq \operatorname{man}_{\nu=0}^{n}\left|\frac{\eta_{k_{\nu}}}{a_{k_{\nu}}}\left(\xi^{k_{\nu}}-\alpha_{k_{n}}^{k_{\nu}}\right)\right|_{p} \tag{4.16}\\
& =\max _{\nu=0}^{n}\left\{\left|\frac{\eta_{k_{\nu}}}{a_{k_{\nu}}}\right|_{p}\left|\xi-\alpha_{k_{n}}\right|_{p}\left|\xi^{k_{\nu}-1}+\xi^{k_{\nu}-2} \alpha_{k_{n}}+\ldots+\alpha_{k_{n}}^{k_{\nu}-1}\right|_{p}\right\}
\end{align*}
$$

Since

$$
\left|\alpha_{k_{n}}\right|_{p}=\left|\xi-\left(\xi-\alpha_{k_{n}}\right)\right|_{\nu} \leq \max \left\{|\xi|_{p},\left|\xi-\alpha_{k_{n}}\right|_{p}\right\} \leq|\xi|_{p}+1
$$

for sufficiently large n, we get

$$
\left|\xi^{k_{\nu}-1}+\xi^{k_{\nu}-2} \alpha_{k_{n}}+\ldots+\alpha_{k_{n}}^{k_{\nu}-1}\right|_{p} \leq\left(|\xi|_{p}+1\right)^{k_{\nu}-1} .
$$

From here using (4.16) we obtain

$$
\left|f_{n}(\xi)-\gamma_{n}\right|_{p} \leq \max _{\nu=0}^{n}\left\{p^{-t_{k_{\nu}}}\right\}\left|\xi-\alpha_{k_{n}}\right|_{p}\left(|\xi|_{p}+1\right)^{k_{n}-1}
$$

Since the sequence $\left\{t_{k_{n}}\right\}$ is monotonically increasing for $n \geq N_{6}, \max _{\nu=0}^{n}\left\{p^{-t_{k_{\nu}}}\right\}$ is bounded. Therefore there exists a positive constant l_{4} sucb that

$$
\left|f_{n}(\xi)-\gamma_{n}\right|_{p} \leq l_{4}\left|\xi-\alpha_{k_{n}}\right|_{p}\left(|\xi|_{p}+1\right)^{k_{n}-1}
$$

for $n \geq N_{6}$ Thus from (4.5) and (4.6) we have

$$
\begin{align*}
\left|f_{n}(\xi)-\gamma_{n}\right|_{p} & \leq l_{5}^{k_{n}} H\left(\alpha_{k_{n}}\right)^{-k_{n} \omega\left(k_{n}\right)} \tag{4.17}\\
& \leq l_{5}^{k_{n}} p^{-t_{k_{n}} c_{1} \omega\left(k_{n}\right)}
\end{align*}
$$

for $n \geq N_{6}$ where l_{5} is a suitable constant with $l_{5}>0$. Furthermore from $\lim _{n \rightarrow \infty} \omega\left(k_{n}\right)=$ $+\infty$, (4.2), (4.4) and (4.13) we deduce that there exist suitable sequences $\left\{s_{n}^{\prime}\right\}$ and $\left\{s_{n}^{\prime \prime}\right\}$ such that

$$
\begin{equation*}
p^{-t_{k_{n+1}} / 2} \leq H\left(\gamma_{n}\right)^{-s_{n}^{\prime}} \tag{4.18}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{5}^{k_{n}} p^{-t_{k_{n}} c_{1} \omega\left(k_{n}\right)} \leq H\left(\gamma_{n}\right)^{-s_{n}^{n}} \tag{4.19}
\end{equation*}
$$

for $n \geq N_{7} \geq N_{6}$ where $\lim _{n \rightarrow \infty} s_{n}^{\prime}=+\infty$ and $\lim _{n \rightarrow \infty} s_{n}^{\prime \prime}=+\infty$. Combining (4.14), (4.15) and (4.17) we obtain

$$
\begin{equation*}
\left|f(\xi)-\gamma_{n}\right|_{p} \leq \max \left\{p^{-t_{k_{n+1}} / 2}, l_{5}^{k_{n}} p^{-t_{k_{n}} c_{1} \omega\left(k_{n}\right)}\right\} \tag{4.20}
\end{equation*}
$$

for $n \geq N_{7}$. From here using (4.18), (4.19) and (4.20) we also have

$$
\left|f(\xi)-\gamma_{n}\right|_{p} \leq \max \left\{H\left(\gamma_{\pi}\right)^{-s_{n}^{\prime}}, H\left(\gamma_{n}\right)^{-s_{n}^{\prime \prime}}\right\}
$$

for $n \geq N_{7}$. Let $s_{n}:=\min \left\{s_{n}^{\prime}, s_{n}^{\prime \prime}\right\}$. From the inequality above we obtain

$$
\left|f(\xi)-\gamma_{n}\right|_{p} \leq H\left(\gamma_{n}\right)^{-s_{n}}
$$

for sufficiently large n where $\lim _{n \rightarrow \infty} s_{n}=+\infty$. If the sequence $\left\{\gamma_{n}\right\}$ is not a constant sequence then $\mu(f(\xi)) \leq t$ for $f(\xi)$, that is, $f(\xi)$ is a p-adic U-number of degree $\leq t$ Otherwise $f(\xi)$ is a p-adic algebraic number of K.

Corollary . For $k_{n}=n$ ve $t=1$ from Theorem 4 we obtain Theorem 3 in [9] as a special case.

REFERENCES

[1] BAKER, A. : On Mahler's Classification of Transcendental Numbers, Acta Math., 111 (1964), 97-120.
[2] İÇEN, O.Ş. : Anhang zu den Arbeiten "Über die Funktionswerte der p-adischen elliptischen Funktionen I und II", İst. Üniv. Fen Fak. Mec. Seri A, 38 (1973), 25-35.
[3] KOKSMA, J.F. : Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monatsh. Math. Physik, 48 (1939), 176-189.
[4] LeVEQUE, W. : On Mahler's U-Numbers, London Math. Soc., 28 (1953), 220-229.
[5] MAHLER, K. : Zur Approximation der Exponentialfunktion und des Logarithmus I, J. rcine angew. Math., 166 (1932), 118-136.
[6] MAHLER, K. : Über Klasseneinteilung der p-adischen Zahlen, Mathematica Leiden, 3 (1934), 177-185.
[7] MORRISON, J.F. : Approximation of p-Adic Numbers by Algebraic Numbers of Bounded Degree, Journal of Number Theory, 10 (1978), 334-350.
[8] ORYAN, M.H. : Über gewisse Potenzreihen, die für algebraische Argumente Werte aus den Mahlerschen Unterklassen U_{m} nehmen, İst. Üniv. Fen Fak. Mec. Seri A, 45 (1980), 1-42.
[9] ORYAN, M.H. : Über gewisse Potenzreihen, deren Funktionswerte für Argumente aus der Menge der p-adischen Liouvilleschen Zahlen p-adische U-Zahlen vom Grade $\leq m$ sind, Ist. Univ. Fen Fak. Mec. Seri A, 47 (1983-1986), 53-67.
[10] ORYAN, M.H. : On the Power Series and Liouville Numbers, Doğa Tr. J. of Mathematics, 14 (1990), 79-90.
[11] SCHNEIDER, Th. : Einführung in die transzendenten Zahlen, Berlin, Göttingen, Heidelberg, 1957.
[12] WIRSING, E. : Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math., 206 (1961), 67-77.
[13] ZEREN, B.M. : Über einige komplexe und p-adische Lückenreihen mit Werten aus der Mahlerschen Unterklassen U_{m}, İst. Üniv. Fen Fak. Mec. Seri A: 45 (1980), 89-130.

Department of Mathematics,
Istanbul University
34459 Vezneciler - İstanbul, TÜRKIYE
<yilmazg@ist,anbul.edu.tr»

[^0]: ${ }^{1}$ This paper is an English translation of the substance of a doctoral dissertation accepted by the Institute of Science of the University of Istanbul in October 1996. I am grateful to Prof. Dr. Mehmet H. ORYAN for his valuable help and encouragement in all stages of this work.

