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DETERMINISTIC AND STOCHASTIC MODELS FOR SPREADING
TWO-SPECIES POPULATION

S.5. DE BARD P.K. DAS

Abstract

The deterministic and the stochastic equations that
describe the system of two-species spreading population with
interaction agmongst themselves, have been discussed. The
stochastic partial differential equations for suéh
population can be derived from a general model proposed
earlier by De (15%87) and more recently from random
ecological niche factors—-consideration by De (1995). The
stationary solutions for the Fokker-Planck equation
corresponding to these stochastic partial differential
equations for this spreading population system might be
given as the solitary wave or as the periodic wave
sclutions. The solitary wave solgtions of the deterministic
equations for the same population have also been presented.

Discussion has also been made on the utility of the
deterministic equations as the tool for the approxzimate
evaluation of the transition probabilites for the

statistical case.
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1. INTRODUCTION-

The study of the growth of the interacting populations
that spread in the regicn of space 1is generally done with
the help of either the deterministic equations of reaction-
diffusion type or by the stochastic partisl differential
equations. These stochastic partial differential equations
are constructed from the corresponding deterministic
evolution equations of reaction diffusion type describing
such a population system, by the perturbation of all or some
of the parameters of the equations with the white noises.
Thus, the deterministic equations are primarily important in
the study of an eco-system since they are the basic
ingredients for the stochastic model that may be more
relevant to the actual situations for the system; apart from
their own merit of describing the eco-system in a simpler
way. Here, we shall study the eqguations of both the types
for a two-species spreading population with a special kind
.of interaction among them. But, in the present case we shall
begin with the stochastic eguations generated from a more
general model propcsed earlier by the present author (De,
1587; 1991; 198%5) and then discuss the corresponding
deterministic eguations that arise, as the ‘byproduct’ in
the approximate evaluation of the transition probabilities

in the stochastic cases., 0Of course, these equations are
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themselves relevant for the two-species population because
they can describe the deterministic nature of the population
growth and pattern.

In section 2, we introduce the stcchastic egquaticns for
the two-species population, that can be derived from the
general model. In section 3, the sclitary wave as well as
the periodic solutions for the stationary cases of the
Fokker-Planck equaticns correspending to these stochastic
equations have been cbtained. In section 4, the
corresponding deterministic egquations have been introduced
as the tocl for approximate evaluation of the transition
probabilities. In the subsequent secticn, the soliton type
sclutions or steady waves are shown to be the possible
solutions if the parameters of the model satisfy some
relations among themselves.

2. THE STOCHASTIC EQUATIONS FOR TWO-SPECIES POPULATION

It has been shown earilier ({(De, 1987; 1991; 1995) that
the populaticn density of the i™ species, X; (x, t){i=1l, 2,
njat time t and at the space pcint x of R" (n=2 or 3),
satisfy the focllowing basic equations

aXi(x,t) _ 88
at - 5

+ N1 (X, t) (l}

stands for the

Where S is functiecnal of X; ‘s and
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functional derivative w.r. to X;. The variables 7; (x, t)are

characterized by the following statistical properties

The brackets mean the averaging over m; s with the Gaussian o
probability distribution. It has been shown there that the

population densities are connected with the’random causes’

for the system and these random variables are supposed to
describe the stochastic processes to Ito . (or diffusional)

type.

The different choices for the functional S can produce
the governing stochastic partial differential equations for
different systems of populations with or without interaction
among the species. Presently, we want to study a two-species
spreading population with a special kind of interaction
among them for which the choice of the functional § will be

the folliwing

1
s = 2—! [di(V Xi(x, t))% + do(V Xa(x, £))2 - ay{¥ii{x, t))?

20, 200
— 2 et 3 Z 3
0 (X2 (%, €))7 + gp—(aix, £))7 + 5 (X (x, )
¢ B (X (x, t) X2(x, t))*] dx (3)
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where d;, ds are the diffusion ceefficients, o3, ®; are the
intrinsic growth rates and K;, Ks are carrying capacity
parameters for the corresponding species. &2 1s the
interaction parameters. This functional can result the

following stochastic eguations for the population under

discussion.
8X; (r, t) X (%, t)
=d; V2 ¥ (%, t) +aq 1- —————  ¥;iix,t)
ot Ki
CoEp(Xi(®, t) Xs(x, t))¥+ mi(x, t) (4)

(i =2,2; §j =1i, 3 =1, 2)
The existence results for a similar class of the stochastic

differential eguations have been considered by Da Prate

(1983) and Da Prato, et al.(1979; 19%982).

3, THE STATIONARY SOLUTIONS OF THE FORKER-PLANCK EQUATION

The Fokker-Planck equation corresponding to the
stochastic differential equations (1) can be derived (De,

1987) in the following form

o b 83

[ +
6Xj_ BX;‘L SXi

gg =% [ dx 13 {5)

where P is the transition probability,

P = P (X’, t; | X", t”] (6)
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The equilibrium or stationary soclutions of the Fokker-Planck

equation (5) can be shown (De, 1987} to be of the form

Peqg = Co exp (-8 [X]}

(7)
X o= ({1, X2y e, Xp)
Where C, is the normalization constant. Thus, the stationary
solution of the Fokker-Planck equation corresponding to the
stochastic equations (4) describing the two-species

interacting and spreading population, is given by (using the

functional S for such system, as given in (3)}.

1 )
Peq = Co exp ~ 5 | {di (Vra(x, t))? + da(Vaa(x, t))?
v
2 2 201 3
- oy (Xp{z, t})® — o (Xz{x, t))° + IR, (X1 (x, t))
200 3 2 2
+ 3K, (¥1(x, ©))7 + 2K {x, t))° ¥p(x, t))7] dx {8)
For such situation, we must have
2¢
di(V X)) + da(V X2)? - ale_ szg + -3—1%—1 Xi
1
24
‘|""-‘“—“2 Xg + £12 X;lz Xg

3K>

be independent of time in the region concerned, i.e.
R (n = 2 or 3). Let us consider the two-dimensional case.
The above expression will ke egqual to its initial wvalue

obtainable from the initial values of ¥;, X, VX1 and V.

Let this initial value of the above expression be ¢,(X)

I

that is, we write
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201 3

4y (V )2 + dodV X207 - ouXi- opXs + —o X3
3K,
20, 3 2 2
+ 3K, X3 + B2 X1 X3 = g () (9}

If we seek the solutions of this equation with the
parameters satisfying di, d2 2 0, a1 > 0, o > 0 and Ky, Kx >
0, to be of the fdrm :
(10)
Where u = ax + by - ct
And take the function ¢§,(X)=0, we can achieve to the
spolition or steady wave sclutions. With (10}, the equation

(9) becomes

d¥, dx, 2 2
dl(du )2+ do +(du )2 (2% + b%) - mX;: oz X3
207 3 20 a2 3 B
37, <2 toagg %eoer X0 =00 D)
and we have the solution
Xy 51
= Sech (Au) {12)
) 82

Where 8;, 8; and A satisfy the following equations

s+ 2 8%=0

K1 1 K2 "2
A% (a® + b%) (d1521 + d2822) = 0y 521 + Qs 522 (13)
Za2 2 2
and g2 & 0, = oy & + o &
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2 set of solutions of eguations (13} for & & and A 1is
given by

1/2

o+ O p2/3 }
(84 + b2) (d, + pZ/Edz

2/3
u; ¥+ p * 0 qa2
& = [ ] (14)
E12
ot Olzpﬂ3 1/2
b; = [ ]
€12
01Kz
where P = - > 0
oKy

For real values of & and & we must have either K o +Kaa ;>0
and &1z >0 or K§a1+ K§a2<0 and €2 < 0. In the latter case, we

have imaginary A and hence we have the periodic (wave)

solutions for X, and X; instead of solitary wave solutions.

4, THE APPROXIMATE TRANSITION PROBABILITIES AND THE
DETERMINISTIC EQUATIONS.

Now, we describe how the deterministic eguations for
the eco-systems  become relevant in the approximate
evaluation of the transition probabilities of the- system
which is described by the stochastic eguation. This method
was originally applied by Inagaki ({1%82) in the problem of

random mutations in stochastic Eigen model and later by De
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(1984) in a non-linesar model of population system. The
essential point of this method is to find a set ©of locally
stable points of the exponent in the following path integral

splution of (5} for the transition probability

[

R 1 .
P[xf, t;kxul t7] = ¢ I eXp{— —2—,{”dt/\ (X, X, t)}D [X(t}]

(15)

with the boundary conditions
X: (%, t7) = X' (=)

' (18)
X: (%, t7) = %" (%)

. 1 . 638 5
and A (X, X, t) = — | ax z (%%, t) + ———} (1n
2 BXi(X! t)
. 0% P . .

with X; = ot and € is a normalization constant.

In fact, this set of locally stable points will
determine the special path from &1l the possible paths
indicated in (15%) and thus, they form a class of solutions

which satisfy the condition (De, 1987).

&8 =0 {18)
t! ~
where K= ] at [H ax (19)
»
2
with ff= ES T Xi(x, t)+ _.s {20)
2 i
bx; (x, )

It has been proved there that the variational equation

(18) corresponds to the following Euler-Lagrange type

equations.
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y =0 (21

_For the single-species population, we have

1. )
H= — {x (%, t)- dV?X (x, t)- ax (x, t)

o 2
+ —¥%(x, t
=X ix, £}
and it can be shown that for this case the equation (21) is
equivalent to the following coupled equations

o
Y=X—dV2X—(xX+TX2

(22)

ay 2¢a
— + dV?Y + ¥ = - XY
at K

We can take as a class of solutions by the trivial solution
¥ = 0 of the second of the guations (22). This gives the

reguired solution X% (x, t)which satisfies the equation

ox X
= = dviK + aX (1 - — 2
ot aX | K) (23)

Expanding Xi(x, t) around xX°{x, t), that is,

Xi{x, t) = x%(x, t), E(x, t)
where £(x, t)is small and vanishes on the boundary &V and at
t=t” and t’, we can also expand H . Retaining only the first

"order terms in £(x, t) the path integral for transition

probability can be approximated to give
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A 1 .
pxt, el x, w1 = coexp (- 5—H X, VX, x°)
j‘ 2
x | D) exp (- —2—1 0 (E%)dt dx) (24)

Thus, the approximate evaluation depends on finding certain
locally stable solutions X“(x, t)which satisfy {23) and this
is a' deterministic equation that describes a spreading
population regulated by the logistic growth. We can apply
the same preocedure to the two-species spreading and
interacting population described by the functicnal S, given
in {3). It can be shown that the leccally stakle solutions
which are necessary for the approximation of the transition
probabilities are the sclutions of the fellowing
deterministic eguaticns which describe the deterministic

growth and spread of that interacting population

aXi (Xr t)
gt

Xi(®, t)
Ki

= iV (x, t) + X (%, t) (1 -

- e {Xilx, ©) (X (%, ©))7 (25)
(ir ] = 1r 2; i = ])

Thus, we find another use for the deterministic egquations

for the ecc-systems. In fact, they are helpful to the

statistical ecclogy as well, apart from their conventional

use as the primary model to study an eco-system.
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5, SOLITARY WAVE SOLUTIONS OF THE DETERMINISTIC EQUATIONS

Let us seek the solutions of the deterministic equations
(25) for the two-species interacting and spreading
population in the form:
¥y = U; (X) i=1, 2
Where - (26)
X =ax + by - ct

Then we have

LU, 5 2 a?u, 8} 2
- Ey < d, (2% + p%) 2t U (1 - "R—l-) ~ Exz WU,

U, ; ) a2u, U, [f (27)
- —ﬁDX = dz{a + b ) '—d2§2+ U, (1 - “K_,';) - €12 102

Then we have the following set of simultaneous first-order

differential equations

dus
x -
dau,
ax — Ve

{28)

av
&1 - aiUi (1 - K) - GV + %122 U, U3

dv
ﬁz - azlUz2(1 - Tz) - LoV, + HE U U,

where
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(e 5] Ol

(29)
C = C Cy = < B _ g2
= 7 T T T I
' oAb P b)) TP @by
As the boundary conditions we can take
U1 (_OO) =0 = Uz ('—w)
(30)
and U, (+e) = Dy, Uy (+eo) = Dy
The critical or rest points of (28) are given by
V1 = 0 = Vz
U
aiUp (1 - Ki ) —B(f U2 =0
(31)
U
azUz (1 - Kz ) %‘j viv, =0
From these, it follows that (U, Uz, Vi, V) = (0, 0, 0, 0)

is one of the rest points, the other points are given by

U, Brz 2
- | -
ar (1 Kl) a, 2 0 (32)
U _ 0 Baz o2
a2 ( 1 Kz) dz Ul =0

Now, linearizing about the rest point (0, 0, 0, 0) we cbtain

as the coefficient matrix

0 0 0 1 (23)
-d1 0 —Cl 0
0 -a>. O -Cz
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whose eigenvalues are given by the roots of the eguation

{?\. (Cl + }.) + a; } {7\. (Cg + 7\,) + a2] = (.

They are

Ny = (i=1, 2 (34)

In order to satisfy the boundary condition (30) at X— -,
we must Ci, C; <0. Also, if |G| < 2a%, |cal<zas®, this rest
point is a spiral point and therefore any solution which
approaches to 1it, must eventually be negative and thus
unacceptable. Therefore we should have lc.| < 2ar®, |c.l<2a.”
and the solution (wave) 1is represented by the trajectory
joining the peoints {0, 0, 0, 0) and (D;, DB, O, 0). The other
rest points can be considered in this way and we can proceed
towards the existence of the trajectories representing the
solutions (waves). Much discussions have been made by
Kennedy, et. al. (1980} for a similar case and therefcre we %
shall not proceed in that direction. Rather, we like to find
the form of the sclution of the eguations (28). In fact, we

have a set of solutions of the form ;:

o exp (AX) ,
, = =1
U T G texp ) 12 . 2

g exp (AX) (35

Vi T 417 (T renp (X))
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if the following relations are satisfied
-K2:a1+C1K=a2+C27&

2
2 _ Blza“ _ _ o
23 = . ds = a; {1 W {36)

= a (.1 . —
z K2

From these relations we find, after wusing (2%9), the

following relations in terms of the parameters of the model.

(onds - aady) KiKz di'? dp'/?
C(.1K2d23/2 _ a2K1d131’2

A= (ouds - apdy)/c(dr - dz) {oudy ~ opdi)?

2
c

a‘ + b*

(dy - di) (o3 - ¢2) (37)

¢4

= —— (Kpd2'? = Kpdi?)  (0aKod2®? - apKady®'?)
€12K1°Kz

c? _ 2 (o Kpda?? - apKyd,?%)?

a? £12K *K% (dy - dp)?

Eliminating c?/(a® + b?*) we have two relations among the
parameters oy, O2,d;, d and Ki, Kz. They are

2(0 - o) (o Kadz/? - oy Kidy'%)2

(oads - 0dy)? = -
£12 KiKz{d: - di)

(38)
2 (0 - 02) (o Kadz®? — o Kadi®'?)

= ooz (dy - di) (Ked'? - KidyM?)

Thus, among the six parameters only four of them are

independent for all existence of the sclutions of the form
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(35), which represent the solitons or steady progressive
waves. We can solve, from the relations (38), for K;, Kz in

terms of others and they are given by

205d, (@ - @) (d; - )

K o
LT g, {(2di(oe - o)t on{dy — di))?
(39)
i 2a3dy {on - ap) (dy - di)
K =
27 g {(2da{on - o)+ ap(dy - &) )P

When such values of the parameters (the carrying capacity
parameters) are attained by them .forl an environment, the
above types of soliton solutions will manifest for the
system of two-species interacting population. In deriving
relations (37) and also the subsequent relations we have
assumed

ody - opdy 2 0O
and  oKxd?? - aKidiY? = 0
But when
oudy, - Oxd) = 0 = ayKxdy?? - pKydp P (40)

which leads to

o _ a4 _

Oz da K? ’

we have from {36), Ci = C; and consequently o; = o2, K; = K
and d; = d; and then we have only three relations left. They
are
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-A° = a; + Ci;A

o (41)

2)" Pioot®/did; = a; (1- RKgr?
3di

These relations determine o, Ac and c?/(a® + b?) for the

solutions (35). Here the values of A coincide with the

eigenvalues of the coefficient matrix of the linearized’

problem, given by (34).

Lastly, we like to point out that if the relations (38)
are satisfied among the parameters then it can be shown that
the fcllowing set is also the soclutions of the deterministic

equaticns (25)

Ax
a e £ 2 AX .
Ui = + sech? —
i a,172 B + ™) a,172 ch >

(1 =1, 2) (42)

where & is small and A is any arbitary constant.

Thus we have obtained the soliton solutions of the'type
(35) or (42) for the case of twc competing species of
identical growth and spread parameters (that is, for similar
type of species) in an environment which is equally capable
of carrying them; as evident from equations (41). Alsoc, such
types of sclutions are possible for this case of two-gpecies
poepulation when the parameters cof the model satisfy certain
relations fequaticn (38) or (39)] among themselves. It is to
be noticed that these solutions satisfy similar boundary

conditions as stated in {30).
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