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Abstract

In this paper we introduce upper/lower s-m-continuous multifunc-
tions as multifunctions defined on a set satisfying some minimal con-
ditions. We obtain some characterizations and several properties of
such multifunctions unifying some results established in [8}, [9], [12],
[20], [22] and [23].
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1 Introduction

Semi-open sets, preopen sets, c-open sets, d-open sets and [-open sets
play an important role in the research of generalizations of continuity in
topological spaces. By using these sets many authors introduced and inves-
tigated various types of non-continuous functions and multifunctions. In
1978, Kohli [9] defined a function f : X = Y to be s-continuous if for each
point z € X and each open set V' of Y containing f(z) and having con-
nected complement, there exists an open set U of X containing z such that
f(U) c V. In 1989, Lipski [12] extended this notion in the setting of mul-
tifunctions. By replacing an open set of X with semi-open (resp. preopen,
p-open) sets, Ewert and Lipski [8] (resp. Popa and Noiri [22], [23]) de-
fined and investigated upper/lower s-quasi-continuous (resp. upper/lower
s-precontinuous, upper/lower s-f-continuous) multifunctions. The analogy
among their definitions and results suggests the need of formulating a uni-
" fied theory of these multifunctions.

In this paper, we introduce upper/lower s-m-continuous multifunctions
as multifunctions defined on a set satisfying some minimal conditions. We
obtain some characterizations and several properties of such multifunctions
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unifying some results established in [8], [9], [12], [20], [22] and [23]. In the
last section, we recall some types of modifications of open sets and point
out the possibility for new forms of s-continuous multifunctions.

2 Preliminaries

Let X be a topological space and A a subset of X. The closure of A
and the interior of A are denoted by Cl(A) and Int(A), respectively. A
subset A is said to be S-open [1] orsemi-preopen [3] (resp. semi-open [11],
a-open [17], preopen [14]) if A C Cl(Int(Cl(A))) (resp. A C Cl(Int(A)),
A C Int(Cl(Int(A))), A C Int(Cl(A))). The family of all semi-preopen
(resp. preopen, semi-open) sets in X is denoted by SPO(X) (resp. PO(X),
SO(X)). The complement of a semi-preopen or S-open (resp. semi-open,
a-open, preopen) set is said to be semi-preclosed [3] or B-closed [2] (resp.
semi-closed [5], a-closed [15], preclosed [7]). The intersection of all semi-
preclosed sets of X containing A is called the semi-preclosure [3] or B-closure
[2] of A and is denoted by spCl(A) or SCI(A). Similarly, sC1(A), pCl(A)
and aCl(A) are defined. The union of all semi-preopen sets of X contained
in A is called the semi-preinterior or B-interior of A and is denoted by
spInt(A) or SInt(A). Similarly, slnt(A), plnt(A) and alnt(A) are defined.

Throughout this paper, spaces X and Y always mean topological spaces
and FF: X - Y (resp. f: X — Y) presents a multivalued (resp. single
valued) function. For a multifunction F' : X — Y, we shall denote the
upper and lower inverse of a subset B of a space Y by F7(B) and F~(B),
respectively, that is, '

F'(B)y={reX:Fz)CB}and F-(B)={z€eX: Flz)NB#0}.

Definition 2.1 A multifunction F': X = Y is said to be

(1) upper s-continuous [12] (resp. upper s-quasi-continuous (8], upper
s-precontinuous [22], upper s-B-continuous [23]) at a point € X if for each
open set V containing F'(z) and having connected complement, there exists
an open (resp: semi-open, preopen, $-open) set U C X containing z such
that F(U) C V, '

(2) lower s-continuous [12] (resp. lower s-quasi-continuous [8], lower
s-precontinuous [22], lower s-f-continuous [23]) at a point z € X if for each
open set V of Y meeting F(z) and having connected complement , there
exists an open (resp. semi-open, preopen, S-open) set U C X containing z
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such that F(u) NV # § for each v € U,

(3) upper (lower) s-continuous (resp. upper (lower) s-quasi-continuous.
upper (lower) s-precontinuous, upper (lower) s-B-continuous) in X if it has
this property at every point of X.

3 s-m-continuous multifunctions

Definition 3.1 A subfamily mx of the power set P(X) of a nonempty set
X is called a minimal structure (briefly m-structure) on X if # € mx and
X € mx. Each member of my is said to be mx-open and the complement
of a mx-open set is said to be mx -closed.

Remark 3.1 Let (X,7) be a topological space. Then the families 7,
SO(X), PO(X), a(X), SPO(X) are all m-structures on X.

Definition 3.2 Let X be a nonempty set and mx a m-structure on X.
For a subset A of X, the mx-closure of A and the my-interior of A are
defined in [13] as follows:

(1) mx-Cl(A) =n{F:AC F,X — F € mx},

(2) mx-Int(A) = U{U : U C A,U € mx}.

Remark 3.2 Let (X,7) be a topological space and A a subset of X. If
mx = 7 (resp. SO(X), PO{X), a(X), SPO(X)), then we have

(1) mx-Cl(A) = Cl(A) (resp. sCl(A), pCl(A), aCl(A), spCl(A4)),

(2) mx-Int(A) = Int(A) (resp. slnt(A), pInt(A), alnt(A), spInt(A)).

Lemma 3.1 (Maki [13]). Let X be a nonempty set and mx a m-structure
on X. For subsets A and B of X, the following hold:
(1) mx-Cl{X —A) = X —(mx-Int(A)) and mx-Int(X —A) = X —(mx-

ClL(4)),
(2) If (X — A) € mx, then mx-Cl(A) = A and if A € mx, then mx-
Int(A) = A,

(8) mx-Cl(0) = 0, mx-Cl(X) = X, mx-Int(@) = 0 and mx-Int(X) =
X,

(4) If A C B, then mx-Cl(A) C mx-Cl(B) and mx-Int(A) C mx-
Int(B),

(5) A C mx-Cl(A) and mx-Int(A) C A,

(6) mx-Cl(mx-Cl(A)) = mx-Cl(A) and mx-Int(mx-Int(4)) = mx-
Int(A).



Lemma 3.2 Let X be a nonempty set with a minimal structure myx and
A a subset of X. Then © € mx-Cl(A) if and only if UN A # ( for every
U € myx containing .

Proof. Necessily. Suppose that there exists U € mx containing z such
that UNA =0. Then AC X —U and X — (X —U) =U € mx. Then
mx-Cl(A) C X —U. Since z € U, we have z ¢ mx-Cl(4).

Sufficiency. Suppose that z ¢ mx-CIl(A). There exists a subset ' of X
such that X —F € mx, A C F and z ¢ F. Thus there exists (X — F) € my
containing z such that (X — F)N A = 0.

Definition 3.3 A minimal structure my on a nonempty set X is said to
have property (B) [13] if the union of any family of subsets belong to my
belongs to mx. '

Lemma 3.3 (Popa and Noiri [24]). For a minimal structure mx on a
nonempty set X, the following are equivalent:

(1) mx has property (B);

(2) If mx-Int(V) =V, then V € my;

(3) If mx-CI(F) = F, then X — F € my.

Lemma 3.4 Let X be a nonempty set and mx a minimal structure on X
satisfying (B). For a subset A of X, the following properties hold:

(1) A € mx if and only if mx-Int(A) = A,

(2) A is mx-closed if and only if mx-Cl(A) = A,

(3) mx-lnt(A) € mx and mx-Cl(A) is mx-closed.

Proof. This follows immediately from Lemmas 3.1 and 3.3.

Definition 3.4 Let (X,mx) be a nonempty set X with a minimal struc-
ture mx and (Y, o) a topological space. A multifunction F : (X, myx) —
(Y,0) is said to be

(1) upper s-m-continuous at © € X if for each V' € o containing F(z)
and having connected complement, there exists U € mx containing z such
that F(U) C V,

(2) lower s-m-continuous at z € X if for each V € ¢ meeting F(z) and
having connected complement, there exists U € mx containing z such that
Fu)NV # @ for each u € U,

(3) upper/lower s-m-continuous if it has this property at each point z
of X.
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Theorem 3.1 For a multifunction F : (X,mx) — (Y,0), the following
are equivalent:

(1) F is upper s-m-continuous;

(2) FH(V) = mx-Int(F*(V)) for each open set V of Y having connected
complement;

(8) F~(K) =mx-Cl(F~(K)) for every connected closed set K of Y;

(4) mx-Cl(F~(B)) C F~(CU(B)) for every subset B of Y having the con-
nected closure;

(5) FT(Int(B)) C mx-Int(F*(B)) for every subset B of Y such that Y —
Int(B) s connected.

Proof. (1) = (2): Let V be any open set of ¥ having connected com-
plement and z € F*(V). There exists U € mx containing z such that
F(U) C V. Therefore, we have z € U C F*(V) and hence z € mx-
Int(F+(V)). This shows that F*(V) C mx-Int(F*(V)). By Lemma 3.1,
we have mx-Int(F*(V)) C FT (V). Therefore, we obtain F*(V) = mx-
Int(F+(V)).

(2) = (3): Let K be any connected closed set of Y. Then by Lemma
3.1, we have X — F~(K) = FY(Y — K) = mx-Int(FT (Y — K)) = mx-
Int(X — F~(K)) = X — mx-Cl(F~(K)). Therefore, we obtain F~(K) =
mx-Cl(F~(K)).

(3) = (4): Let B be a subset of Y having the connected closure. By
Lemma 3.1, we have F~(B) C F~(Cl(B)) = mx-Cl(F~(Cl(B))) and mx-
CI(F~(B)) c F~(CI(B)).

(4) = (5): Let B be a subset of Y such that ¥ — Int(B) is connected.
Then by Lemma 3.1 we have :
X — mx-Int(F*(B)) = mx-Cl(X — F*(B))
=mx-Cl(F~(Y — B)) C F~ (Y —Int(B)) C X — F*(Int(B)).

Therefore, we obtain F(Int(B)) C mx-Int(F+(B)).

(6) = (1): Let z € X and V be any open set of Y containing F(z) and
having connected complement. Then z € FT(V) = F¥(Int(V)) C mx-
Int(F*(V)). There exists U € myx containing  such that U C F*(V);
hence F(U) C V. This shows that F' is upper s-m-continuous.

Theorem 3.2 For a multifunction F : (X,mx) — (Y,0), the following
are equivalent: )

(1) F is lower s-m-continuous;

(2) F~(V) = mx-Int(F~(V)) for each open set V of Y having connected
complement;




(8) FY(K) = mx-Cl(F*(K)) for every connected closed set K of Y;

({) mx-Cl(F*(B)) C F*(CI(B)) for every subset B of Y having the con-
nected closure;

(5) F~(Int(B)) C mx-Ilnt(F~(B)) for every subset B of Y such that Y —
Int(B) is connected.

Proof. The proof is similar to that of Theorem 3.1.

Corollary 3.1 Let (X, mx) be a nonempty set X with a minimal structure
myx satisfying B and (Y,0) a topological space. For a multifunction F :
(X,mx) = (Y,0), the following are equivalent:

(1) F is upper/lower s-m-continuous;

(2) FY(V)/F~ (V) is mx-open for each open sct V' of Y having connected
complement;

(8) F~(K)/F*(K) is mx-closed for every connected closed set K of Y.

Proof. This follows from Theorems 3.1 and 3.2 and Lemma 3.4.

Remark 3.3 Let mx = 7 (resp. SO(X), PO(X), SPO(X)). Then an
upper/lower s-m-continuous multifunction F : (X,mx) — (Y,0) is up-
per/lower s-continuous (resp. upper/lower s-quasi-continuous, upper/lower
s-precontinuous, upper/lower s-B-continuous). Theorems 3.1 and 3.2 estab-
lish their characterizations which are obtained in [12] (resp. [8], [22], [23]).

Corollary 8.2 Let F : (X,mx) — (Y,0) be a multifunction. If for every
connected set G of Y F~(G) = mx-CF~(G)) (resp. FY(G) = my-
CI(F*(Q))), then F is upper s-m-continuous (resp. lower s-m-continuous).

Proof. Let G be any open set of Y having connected complement.
Then Y — G is connected and closed. By the hypothesis X — FT(GQ) =
F~(Y - G) = mx-Cl(F (Y — G)) = mx-Cl(X — F*(Q)) = X — my-
Int(F*(G)). Therefore, we have F*(G) = mx-Int(F*(G)). By Theorem
3.1, F is upper s-m-continuous. The proof for lower s-m-continuity is
entirely similar.

Remark 3.4 Let mx = PO(X) (resp. SPO(X)). Then, Corollary 3.2
establishes the results which are obtained in [22] (resp. [23]).

Definition 3.5 A function f : (X,mx) — (Y, 0) is said to be s-m-continuous
if for each point ¢ € X and each open set V' containing f(z) and having con-
nected complement, there exists U € mx containing z such that f(U) C V.
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Corollary 3.3 For a function f : (X,mx) — (Y,0), the following are
equivalent:

(1) f is s-m-continuous;

(2) f~HYV) = mx-Int(f~1(V)) for each open set V of Y having connected
complement; :

(8) f~UK) = mx-CI(f 1(K)) for every connected closed set K of Y;

(4) mx-Cl(f~Y(B)) C f~Y(CU(B)) for every subset B of Y having the con-
nected closure;

(5) f~YInt(B)) C mx-lnt(f~1(B)) for every subset B of Y such that
Y — Int(B) is connected.

Remark 3.5 Let mx = 7 (resp. SO(X), PO(X), SPO(X)). Then a s-m-
continuous function f : (X, mx) — (Y, o) is s-continuous (resp. s-quasi-
continuous, s-precontinuous, s-B-continuous). Corollary 3.3 establishes
the characterizations of s-continuity (resp. s-precontinuity, s-f-continuity)
which are obtained in [9] (resp. [22], [23]). '

Definition 3.6 A subset A of a topological space (X, 7) is said to be

(1) a-paracompact [10] if every cover of A by open sets of X is refined by a
cover of A which consists of open sets of X and is locally finite in X,

(2) a-regular [27] if for each a € A and each open set U of X containing q,
there exists an open set G of X such that « € G C CI(G) C U.

Lemma 3.5 (Kovagevié [10]). If A is an a-regular a-paracompact set of a
space X and U is an open neighborhood of A, then there exists an open set
G of X such that AC G C Cl(G)CU.

For a multifunction F : (X,myx) — (Y,0), we define a multifunction
CIF : (X,mx) — (Y,0) as follows: (CIF)(z) = Cl(F(z)) for each point
z € X. Similarly, we can define aClF, sCIF, pClF, spClF.

Lemma 3.6 If F : (X,mx) — (Y, a) is a multifunction such that F(z)
s a-paracompact a-regular for each © € X, then for each open set V of Y.
FHY(V) = G*(V), where G denotes aOlF, sC1F, pClF, spCIF or CIF.

Proof. The proof is similar to that of Lemma 3.3 in [21].

Theorem 3.3 Let F : (X,mx) — (Y,0) be a multifunction such that
F(z) is a-regular a-paracompact for each x € X. Then the following are
equivalent:




(1) F is upper s-m-continuous;

(2) CIF is upper s-m-continuous;
(8) «CLF is upper s-m-continuous;
(4) sCLF is upper s-m-continuous;
(5) pCLF is upper s-m-continuous;
(6) spClF is upper s~m-continuous.

Proof. We set G = «CIF, sCIF, pCIF, spCIF or CIF. Suppose that F
is upper s-m-continuous. Let V be any open set of ¥ containing G(z) and
having connected complement. By Lemma 3.6, we have G1 (V) = F+(V)
and hence there exists U € myx containing z such that F(U) C V. Since
F(u) is a-paracompact and ca-regular for each v € U, by Lemma 3.5 there
exists an open set H such that F(u) C H C Cl(H) C V; hence G(u) C
CI(H) C V for every u € U. Therefore, we obtain G(U) C V. This shows
that G is upper s-m-continuous.

Conversely, suppose that G is upper s-m-continuous. Let z € X and V
be any open set of ¥ containing F(z) and having connected complement.
By Lemma 3.6, we have € FT(V) = GT(V) and hence G(z) C V. There
exists U € myx containing z such that G(U) C V. Therefore, we obtain
U C GT(V) = FT(V) and hence F(U) C V. This shows that F is upper

s-m-continuous.

Lemma 3.7 If F : (X,mx) — (Y,0) is a multifunction, then for each
open set V of Y G~ (V) = F~(V), where G = aClF, sClF, pClF, spCLF
or CIF' .

Proof. The proof is similar to that of Lemma 3.4 in [21].

Theorem 3.4 For a multifunction F : (X,mx) — (Y,0), the following
are equivalent:

(1) F is lower s-m-continuous;

(2) CIF is lower s-m-continuous;

(3) aClF is lower s-m-continuous;

(4) sCIF is lower s-m-continuous;

(5) pCLF' is lower s-m-continuous;

(6) spCLlF is lower s-m-continuous.

Proof. By using Lemma 3.7 this is shown similarly as in Theorem 3.3.
Remark 3.6 Let mx = SO(X) (resp. PO(X), SPO(X)). Then, Theorem
3.4 establishes the results which are obtained in [20] (resp. [22], [23]).
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4 Some properties

For a multifunction F : (X,mx) — (Y,0), the graph G(F) = {(z, F(z)) :
z € X} is said to be strongly m-closed if for each (z,y) € (X xY) — G(F),
there exist U € my containing z and an open set V' of ¥ containing y such

that [U x CL(V)]|NG(F) = 0.

Lemma 4.1 A multifunction F : (X,mx) — (Y,0) has a strongly m-
closed graph if and only if for each (z,y) € (X xY) — G(F), there exist
U € mx containing z and an open set V of Y containing y such that

FU)NCYV)=90.
Proof. This proof is obvious.

Theorem 4.1 Let (Y,0) be a regqular locally connected space. If
F:(X,mx)— (Y,0) is an upper s-m-continuous multifunction such that
F(z) is closed for each © € X, then G(F) is strongly m-closed.

Proof Let (z,y) € (X XY) — G(F), then y € Y — F(z). Since Y is
regular, there exist disjoint open sets V7 and V; of ¥ such that F(z) C 14
and y € V,. Moreover, since Y is locally connected, there exists an open
connected set V such that y € V € Cl(V) C V,. Since F is upper s-m-
continuous and Y — Cl(V) is an open set having connected complement,
there exists U € mx containing z such that F(U) C Y — Cl(V). Therefore,
we have F(U) N CYV) = 0 and by Lemma 4.1 G(F) is strongly m-closed.

Remark 4.1 Let mx = SO(X) (resp. PO(X), SPO(X)). Then, Theorem
4.1 establishes the results which are obtained in [20] (resp. [22], [23]).

Let X be a nonempty set with a minimal structure my and A a subset
of X. The m-frontier of A, denoted by mFr(4), is defined by mFr(A) =
my-Cl(4) N mx-Cl(X — A) = mx-Cl(A) — mx-Int(A).

Theorem 4.2 The set of all points © of X at which a multifunction F :
(X,mx) — (Y,0) is not upper s-m-continuous (resp. lower s-m-continuous)
is identical with the union of the m-frontiers of the upper inverse (resp.
lower inverse) images of open sets containing (resp. meeting) F(z) and
having connected complement.




Proof. Let z be a point of X at which F' is not upper s-m-continuous.
Then, there exists an open set V of Y containing F'(z) and having connected
complement such that U N (X — FY(V)) # 0 for every U € mx containing
z. Therefore, we have z € mx-Cl(X — F*(V)) and hence z € mFr(F+(V))
since z € FH (V) C mx-ClF*(V)).

Conversely, suppose that V is an open set of Y. containing F(z) and
having connected complement such that z € mFr(F*(V)). If F is upper
s-m-continuous at z, then there exists U € myx containing z such that
U C F*(V); hence z € mx-Int(F*(V)). This is a contradiction and hence
F is not upper s-m-continuous at z.

The proof for lower s-m-continuity is similar.

Definition 4.1 A multifunction F' : (X,mx) — (Y,0) is said to be up-
per s-m-rarely continuous at a point z of X if for each open set G of Y.
containing F(z) and having connected complement, there exist a rare set
Rg with Cl{(Rg) N G = () and a mx-open set U containing z such that
F({U) € GU Rg. A multifunction F' is said to be upper s-m-rarely contin-
uous if it has this property at each point of X.

Theorem 4.3 Let X be a nonempty set with two minimal structures m%

and mY, such that UNV € mk whenever U € m% and V € mk. Ifa
multifunction F 1 X — (Y, 0) satisfies the following two conditions:

(1) F:(X,m%) — (Y,0) is upper s-m-rarely continuous and

(2) for each open set G containing F(z) and having connected comple-
ment, F~(Cl(Rg)) is a mY-closed set of X, where Rg is the rare set of
Definition 4.1,
then F: (X,m) — (Y,0) is upper s-m-continuous.

Proof. Let z € X and G be an open set of Y. containing F(z) and
having connected complement. Since F : (X,m%) — (Y,0) is upper s-
m-rarely continuous, there exist V € m% containing z and a rare set Rg
with Cl{Rg) N G = @ such that F(V) C G U Rg. If we suppose that
z € F~(Cl(Rg)), then F(z)NCl(Rg) # 0, but F(z) C G and GNCYRg) =
@. This is a contradiction. Thus z ¢ F~(Cl(Rg)). Let U = VN (X —
F~(Cl(Rg))). Then U € mk and z € U since z € V and z € X —
F~(C(Rg)). Let s € U, then F(s) C G U Rg and F(s) N Cl(Rg) = 0.
Therefore, we have F(s) N Rg = 0 and hence F(s) C G. Since U € m}
containing z, it follows that F' : (X, m%) — (Y, o) is upper s-m-continuous.

Remark 4.2 Let mxy = SPO(X). Then, Theorem 4.3 establishes the re-
sult which is obtained in [23].
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Definition 4.2 A multifunction F' : (X, mx) — (Y, 0) is said to be lower
m-continuous if for each z € X and every open set V of Y. meeting F(z)
there exists U € mx containing = such that F(u) NV # @ for every u € U.

Lemma 4.2 A multifunction F : (X,mx) — (Y, 0) is lower m-continuous
if and only if F(mx-Cl(A)) C CI(F(A)) for every subset A of X.

Proof. This follows from Theorem 3.2 of [18].

Theorem 4.4 If F: (X,mx) — (Y,0) is lower s-m-continuous and F(A)
is connected for every subset A of X, then F is lower m-continuous.

Proof. Let A be any subset of X. Since Cl(F(A)) is closed and con-
nected, by Theorem 3.2 F*(CI(F(A))) = mx-Cl{(FT(Cl{F(A)))) and A C
F+(F(A))) Cc FT(CF(A))). Thus we have F(mx-Cl(A)) C Cl{F(A)). It

follows from Lemma 4.2 that F' is lower m-~-continuous.

Remark 4.3 If mx = SO(X) (resp. PO(X), SPO(X)), then Theorem 4.4
establishes the results which are obtained in [20] (resp. [22], [23]).

5 New forms of s-continuity in topological spaces

There are many modifications of open sets in topological spaces. We shall
recall the main ones. Let (X, 7) be a topological space and A a subset of
X. A subset A is said to be Tegular closed (resp. regular open) if Cl(Int(A))
= A (resp. Int(Cl(A)) = A).

Definition 5.1 A subset A of a topological space (X, 7) is said to be

(1) 6-open [26] if for each z € A there exists an open set U of X such
that z € U C Cl(U) C A,

(2) 6-open [26] if for each z € A there exists a regular open set U of X
such that £ € U C A,

(3) b-open [4] if A C Int(Cl(A)) U Cl(Int(A)).

Definition 5.2 A subset A of a topological space (X, 7) is said to be
(1) semi-B-open [6] if for each £ € A there exists a semi-open set U of

X such that z € U C sCl(U) C A,
(2) semi-regular [6] if it is semi-open and semi-closed.
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A point z € X is called a §-cluster point of A if Int(CL(V))NA # @ for
every open set V containing z. The set of all J-cinster points of A is called
the §-closure of A and is denoted by sC1(A). Theset {z € X 12 € U C A
for some regular open set U of X} is called the d-interior of A and is
denoted by slnt(A).

Definition 5.3 A subset A of a topological space (X,7) is said to be
(1) d-preopen [25] if A C Int(5C1(A4)),
(2) §-semi-open [19] if A C Cl(s5Int(A)).

The family of all f-open (resp. d-open, b-open, semi-6-open, semi-
regular, §-preopen, §-semi-open) sets in a topological space X is denoted by
H0O(X) (resp. 60(X), BO(X), SO0(X), SR(X), dPO(X), 6SO(X)). These
families have the property of the minimal structure. Moreover, they have
the following properties:

Remark 5.1 (1) 80(X), 0(X) and «(X) have the structure of topology,
(2) BO(X), S60(X), 6PO(X) and 6SO(X) have property B.

For each of modifications of open sets stated above, we can define a new
type of upper/lower s-continuous multifunctions and obtain their character-
izations and properties from Sections 3 and 4. For example, let mx = a(X),
then we obtain the following definitions and characterizations.

Definition 5.4 Let (X,7) and (Y, o) be topological spaces. A multifunc-
tion F : (X,7) — (Y, 0) is said to be

(1) upper s-a-continuous at ¢ € X if for each V € o containing F(z)
and having connected complement, there exists an a-open set U of X con-
taining z such that F(U) C V,

(2) lower s-a-continuous at z € X if for each V € 0 meeting F(z) and
having connected complement, there exists an a-open set U of X contain-
ing z such that F(u) NV # @ for each u € U,

(3) upper/lower s-c-continuous if it has this property at each point z
of X.

Theorem 5.1 For a multifunction F : (X,7) — (Y,0), the following are
equivalent:

(1) F is upper s-a-continuous;

(2) Ft(V) is a-open in X for each open set V of Y having connected
complement;
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(8) F~(K) is a-closed in X for every connected closed set K of Y;
(4) aCl(F~(B)) C F~(GI(B)) for every subset B of Y having the connected

closure;
(5) FH(Int(B)) C alnt(F*(B)) for every subset B of Y such that Y —Int(B)

1s connected.

Theorem 5.2 For a multifunction F : (X,7) — (Y,0), the following are

equivalent:
(1) F is lower s-c-continuous;
(2) F~(V) is a-open in X for each open set V of Y having connected

complement,
(8) FY(K) is a-closed in X for every connected closed set K of Y;
(4) aCl(F*(B)) C F*(CL(B)) for every subset B of Y having the connected

closure;
(5) F~(Int(B)) C alnt(F~(B)) for every subset B of Y such that Y —Int(B)

18 connected.
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