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1 Introduction

The following inequality is well-known in the literature as Hermite-Hadamard inequality: Let

f : I ⊂ R → R be a convex function on an interval I of real numbers and a, b ∈ I with a < b.

Then the following holds

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f (x) dx ≤ f (a) + f (b)

2
. (1.1)

Both inequalities hold in the reversed direction if the function f is concave.

Inequalities in (1.1) have become an important cornerstone in mathematical analysis and

optimization and many uses of these inequalities have been discovered in a variety of settings.

Recently, Hermite-Hadamard type inequality has been the subject of intensive research. For

recent results, refinements, counterparts, generalizations and new Hadamard’s-type inequalities,

we refer [1, 2, 8–11,16–21].

In [8], some inequalities of Hermite-Hadamard type for differentiable convex mappings con-

nected with the left part of (1.1) were proved using the following lemma:
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Lemma 1.1 Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ (I◦ is the interior

of I) with a < b. If f ′ ∈ L ([a, b]), then we have

1

b− a

b∫
a

f(x)dx− f

(
a+ b

2

)

= (b− a)


1
2∫

0

tf ′(ta+ (1− t)b)dt+

1∫
1
2

(t− 1) f ′(ta+ (1− t)b)dt

 . (1.2)

One more general result related to (1.2) was established in [9]. The main result in [8] is as

follows.

Theorem 1.2 Let f : I ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I with a < b. If the

mapping |f ′| is convex on [a, b], then∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f

(
a+ b

2

)∣∣∣∣∣∣ ≤ b− a

4

(
|f ′(a)|+ |f ′(b)|

2

)
. (1.3)

It is well known that convexity plays a key role in mathematical programming, engineering, and

optimization theory. The generalization of convexity is one of the most important aspects in

mathematical programming and optimization theory. There have been many attempts to weaken

the convexity assumptions in the literature (see, [1,2,8–11,16–21]). A significant generalization

of convex functions is that of invex functions introduced by Hanson in [12]. Ben-Israel and

Mond [14] introduced the concept of preinvex functions, which is a special case of invexity.

Pini [15] introduced the concept of prequasiinvex functions as a generalization of invex functions.

Noor [5–7] has established some Hermite-Hadamard type inequalities for preinvex and log-

preinvex functions. In recent papers Barani, Ghazanfari, and Dragomir in [3] presented some

estimates of the right hand side of a Hermite- Hadamard type inequality in which some preinvex

functions are involved. His class of nonconvex functions include the classical convex functions

and its various classes as special cases. For some recent results related to this nonconvex

functions, see the papers [4–7,12–15].

2 Preliminaries

Let f : K → Rn, and η(., .) : K × K → Rn, where K is a nonempty closed set in Rn be

continuous functions. First of all, we recall the following well known results and concepts given

in [4–7,13] and the references therein.

238



Mehmet Z. Sarıkaya, Necmettin Alp, Hakan Bozkurt

Definition 2.1 Let u, v ∈ K. Then the set K is said to be invex at u with respect to η(., .), if

u+ tη(v, u) ∈ K, ∀u, v ∈ K, t ∈ [0, 1] .

K is said to be an invex set with respect to η, if K is invex at each u, v ∈ K. The invex set K

is also called η-connected set.

Remark 2.1 We would like to mention that Definition 2.1 of an invex set has a clear geometric

interpretation. This definition essentially says that there is a path starting from a point u which

is contained in K. We do not require that the point v should be one of the end points of the

path. This observation plays an important role in our analysis. Note that, if we demand that

v should be an end point of the path for every pair of points, u, v ∈ K, then η(v, u) = v − u

and consequently invexity reduces to convexity. Thus, it is true that every convex set is also an

invex set with respect to η(v, u) = v − u, but the converse is not necessarily true, see [4–7] and

the references therein.

Definition 2.2 The function f on the invex set K is said to be preinvex with respect to η, if

f (u+ tη(v, u)) ≤ (1− t) f (u) + tf (v) , ∀u, v ∈ K, t ∈ [0, 1] .

The function f is said to be preconcave with respect to η if and only if −f is preinvex. Note

that every convex function is an preinvex function, but the converse is not true.

Definition 2.3 The function f on the invex set K is said to be logarithmic preinvex with respect

to η, such that

f (u+ tη(v, u)) ≤ (f (u))
1−t

(f (v))
t
, u, v ∈ K, t ∈ [0, 1] ,

where f (.) > 0.

Now we define a new definition for prequasiinvex functions as follows:

Definition 2.4 The function f on the invex set K is said to be prequasiinvex with respect to η,

if

f (u+ tη(v, u)) ≤ max {f (u) , f (v)} , u, v ∈ K, t ∈ [0, 1] .

From Definition 2.3 and Hölder preliminary inequality, we have

f (u+ tη(v, u)) ≤ (f (u))
1−t

(f (v))
t

≤ (1− t) f (u) + tf (v)

≤ max {f (u) , f (v)} .
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We also need the following assumption regarding the function η which is due to Mohan and

Neogy [13].

Condition C Let K ⊆ R be an open invex subset with respect to η : K × K → R. For any

x, y ∈ K and any t ∈ [0, 1] ,

η(y, y + tη(x, y)) = −tη(x, y),

η(x, y + tη(x, y)) = (1− t) η(x, y).

We say that η satisfies Condition C, if for any x, y ∈ K and t1, t2 ∈ [0, 1], we have

η(y + t2η(x, y), y + t1η(x, y)) = (t2 − t1) η(x, y). (2.1)

In [5], Noor proved the Hermite-Hadamard inequality for the preinvex functions as follows.

Theorem 2.2 Let f : K = [a, a+ η(b, a)] → (0,∞) be an preinvex function on the interval of

real numbers K0 (the interior of K) and a, b ∈ K0 with a < a + η(b, a). Then the following

inequality holds:

f

(
2a+ η(b, a)

2

)
≤ 1

η(b, a)

a+η(b,a)∫
a

f (x) dx ≤ f(a) + f(a+ η(b, a))

2
≤ f (a) + f (b)

2
. (2.2)

In [3], Barani, Gahazanfari and Dragomir proved the following theorems.

Theorem 2.3 Let A ⊆ R be an open invex subset with respect to η : A×A → R. Suppose that

f : A → R is a differentiable function.Assume p ∈ R with p > 1. If |f ′|
p

p−1 is prequasiinvex on

A, then for every a, b ∈ A the following inequality holds:∣∣∣∣∣∣∣
f(a) + f(a+ η(b, a))

2
− 1

η(a, b)

a+η(b,a)∫
a

f(x)dx

∣∣∣∣∣∣∣
≤ η(b, a)

2(p+ 1)
1
p

[
sup

{
|f ′ (a)|

p
p−1 , |f ′ (b)|

p
p−1

}] p
p−1

.

Theorem 2.4 Let A ⊆ R be an open invex subset with respect to η : A×A → R. Suppose that

f : A → R is a differentiable function. If |f ′| is prequasiinvex on A, then for every a, b ∈ A the

following inequality holds: ∣∣∣∣∣∣∣
f(a) + f(a+ η(b, a))

2
− 1

η(a, b)

a+η(b,a)∫
a

f(x)dx

∣∣∣∣∣∣∣
≤ η(b, a)

4
max {|f ′ (a)| , |f ′ (b)|} .
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In this article, using functions whose derivatives’ absolute values are preinvex and log-preinvex,

we obtained new inequalities related to the left side of Hermite-Hadamard inequality for non-

convex functions.

3 Hermite-Hadamard type inequalities for preinvex func-

tions

We shall start with the following refinements of the Hermite-Hadamard inequality for preinvex

functions. Firstly, we give the following results connected with the left part of (2.2):

Theorem 3.1 Let K ⊆ R be an open invex subset with respect to η : K×K → R. Suppose that

f : K → R is a differentiable function. Assume p ∈ R with p > 1. If |f ′|
p

p−1 is preinvex on K,

then for every a, b ∈ K the following inequality holds:

∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣ ≤
η(b, a)

16

(
4

p+ 1

) 1
p

×
[(

3 |f ′(a)|
p

p−1 + |f ′(b)|
p

p−1

) p−1
p

+
(
|f ′(a)|

p
p−1 + 3 |f ′(b)|

p
p−1

) p−1
p

]
. (3.1)

Proof. Since K is invex with respect to η, for every t ∈ [0, 1], we have a + tη(b, a) ∈ K.

Integrating by parts implies that

1
2∫

0

tf ′(a+ tη(b, a))dt+

1∫
1
2

(t− 1)f ′(a+ tη(b, a))dt

=

[
tf(a+ tη(b, a))

η(b, a)

] 1
2

0

+

[
(t− 1)f(a+ tη(b, a))

η(b, a)

]1
1
2

− 1

η(b, a)

1∫
0

f(a+ tη(b, a))dt

=
1

η(b, a)
f

(
2a+ η(b, a)

2

)
− 1

[η(b, a)]
2

a+η(b,a)∫
a

f(x)dx. (3.2)
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From Hölder’s inequality and (3.2), we have∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣
≤ η(b, a)


1
2∫

0

t |f ′(a+ tη(b, a))| dt+
1∫

1
2

(1− t) |f ′(a+ tη(b, a))| dt



≤ η(b, a)




1
2∫

0

tpdt


1
p


1
2∫

0

|f ′(a+ tη(b, a))|
p

p−1 dt


p−1
p

+

 1∫
1
2

(1− t)
p
dt


1
p
 1∫

1
2

|f ′(a+ tη(b, a))|
p

p−1 dt


p−1
p



≤ η(b, a)

21+
1
p (p+ 1)

1
p




1
2∫

0

[
(1− t) |f ′(a)|

p
p−1 + t |f ′(b)|

p
p−1

]
dt


p−1
p

+

 1∫
1
2

[
(1− t) |f ′(a)|

p
p−1 + t |f ′(b)|

p
p−1

]
dt


p−1
p


=

η(b, a)

16

(
4

p+ 1

) 1
p
[(

3 |f ′(a)|
p

p−1 + |f ′(b)|
p

p−1

) p−1
p

+
(
|f ′(a)|

p
p−1 + 3 |f ′(b)|

p
p−1

) p−1
p

]
which completes the proof.

Theorem 3.2 Under the assumptions of Theorem 3.1, for every a, b ∈ K the following inequal-

ity holds: ∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣
≤ η(b, a)

4

(
4

p+ 1

) 1
p

[|f ′(a)|+ |f ′(b)|] . (3.3)

Proof. We consider the inequality (3.1), i.e.,∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣
≤ η(b, a)

16

(
4

p+ 1

) 1
p
[(

3 |f ′(a)|
p

p−1 + |f ′(b)|
p

p−1

) p−1
p

+
(
|f ′(a)|

p
p−1 + 3 |f ′(b)|

p
p−1

) p−1
p

]
.
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Let a1 = 3 |f ′(a)|
p

p−1 , b1 = |f ′(b)|
p

p−1 , a2 = |f ′(a)|
p

p−1 , b2 = 3 |f ′(b)|
p

p−1 . Here 0 < (p− 1) /p <

1, for p > 1. Using the fact

n∑
k=1

(ak + bk)
s ≤

n∑
k=1

ask +

n∑
k=1

bsk, (3.4)

where 0 ≤ s < 1, a1, a2, · · · , an ≥ 0 and b1, b2, · · · , bn ≥ 0, we obtain

η(b, a)

16

(
4

p+ 1

) 1
p
[(

3 |f ′(a)|
p

p−1 + |f ′(b)|
p

p−1

) p−1
p

+
(
|f ′(a)|

p
p−1 + 3 |f ′(b)|

p
p−1

) p−1
p

]
≤ η(b, a)

16

(
4

p+ 1

) 1
p (

3
p−1
p + 1

)
[|f ′(a)|+ |f ′(b)|]

≤ η(b, a)

16

(
4

p+ 1

) 1
p

4 [|f ′(a)|+ |f ′(b)|]

which completes the proof.

Theorem 3.3 Let K ⊆ R be an open invex subset with respect to η : K × K → R. Suppose

that f : K → R is a differentiable function. Assume q ∈ R with q ≥ 1. If |f ′|q is preinvex on K

then, for every a, b ∈ K the following inequality holds∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣
≤ η(b, a)

8

[(
2 |f ′(a)|q + |f ′(b)|q

3

) 1
q

+

(
|f ′(a)|q + 2 |f ′(b)|q

3

) 1
q

]
. (3.5)

Proof. Firstly, we suppose that q = 1. By the preinvexity of the function |f ′| and (3.2), we

have ∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣
≤ η(b, a)


1
2∫

0

t |f ′(a+ tη(b, a))| dt+
1∫

1
2

(1− t) |f ′(a+ tη(b, a))| dt



≤ η(b, a)


1
2∫

0

t [(1− t) |f ′(a)|+ t |f ′(b)|] dt+
1∫

1
2

(1− t) [(1− t) |f ′(a)|+ t |f ′(b)|] dt


≤ η(b, a)

[
|f ′(a)|+ |f ′(b)|

8

]
.
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Secondly, we suppose that q > 1. Using the well known power mean inequality and (3.2) in the

proof of Theorem 3.1, we have∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣
≤ η(b, a)


1
2∫

0

t |f ′(a+ tη(b, a))| dt+
1∫

1
2

(1− t) |f ′(a+ tη(b, a))| dt



≤ η(b, a)




1
2∫

0

tdt


1
p


1
2∫

0

t |f ′(a+ tη(b, a))|q dt


1
q

+

 1∫
1
2

(1− t) dt


1
p
 1∫

1
2

(1− t) |f ′(a+ tη(b, a))|q dt


1
q



≤ η(b, a)

8
1
p




1
2∫

0

t
[
(1− t) |f ′(a)|q + t |f ′(b)|q

]
dt


1
q

+

 1∫
1
2

(1− t)
[
(1− t) |f ′(a)|q + t |f ′(b)|q

]
dt


1
q


=

η(b, a)

8

[(
2 |f ′(a)|q + |f ′(b)|q

3

) 1
q

+

(
|f ′(a)|q + 2 |f ′(b)|q

3

) 1
q

]
,

where 1
p + 1

q = 1. The proof is completed.

Theorem 3.4 Under the assumptions of Theorem 3.3, the following inequality holds:∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣ ≤
η(b, a)

8
(
2

1
q + 1

3
1
q

) [|f ′(a)|+ |f ′(b)|] . (3.6)

Proof. We consider inequality (3.5), i.e.,∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣
≤ η(b, a)

8

[(
2 |f ′(a)|q + |f ′(b)|q

3

) 1
q

+

(
|f ′(a)|q + 2 |f ′(b)|q

3

) 1
q

]
.
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Let a1 = 2 |f ′(a)|q /3, b1 = |f ′(b)|q /3, a2 = |f ′(a)|q /3, b2 = 2 |f ′(b)|q /3. Here 0 < 1/q < 1, for

q ≥ 1. Using the fact (2.2), we obtain

η(b, a)

8

[(
2 |f ′(a)|q + |f ′(b)|q

3

) 1
q

+

(
|f ′(a)|q + 2 |f ′(b)|q

3

) 1
q

]

≤ η(b, a)

8
(
2

1
q + 1

3
1
q

) [|f ′(a)|+ |f ′(b)|] .

4 Hermite-Hadamard type inequalities for log-preinvex func-

tion

In this section, we shall continue with the following refinements of the Hermite-Hadamard

inequality for log-preinvex functions and we give some results connected with the left part of

(2.2):

Theorem 4.1 Let K ⊆ R be an open invex subset with respect to η : K×K → R. Suppose that

f : K → R is a differentiable function. If |f ′| is log-preinvex on K, then for every a, b ∈ K the

following inequality holds:∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣ ≤ η(b, a)

(
|f ′(b)|

1
2 − |f ′(a)|

1
2

log |f ′(b)| − log |f ′(a)|

)2

.

Proof. By assumption and (3.2) in the proof of Theorem 3.1, integrating by parts implies that∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣
≤ η(b, a)


1
2∫

0

t |f ′(a+ tη(b, a))| dt+
1∫

1
2

(1− t) |f ′(a+ tη(b, a))| dt



≤ η(b, a)


1
2∫

0

t |f ′(a)|1−t |f ′(b)|t dt+
1∫

1
2

(1− t) |f ′(a)|1−t |f ′(b)|t dt



= η(b, a)


1
2∫

0

|f ′(a)| t
(
|f ′(b)|
|f ′(a)|

)t

dt+

1∫
1
2

(1− t) |f ′(b)|
(
|f ′(b)|
|f ′(a)|

)1−t

dt
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= η(b, a)

 |f ′(a)|
log |f ′(b)| − log |f ′(a)|

[
− 1

log |f ′(b)| − log |f ′(a)|

(
|f ′(b)|
|f ′(a)|

)t
] 1

2

0

+

[
1

log |f ′(b)| − log |f ′(a)|

(
|f ′(b)|
|f ′(a)|

)t
]1

1
2


= η(b, a)

[
−2 |f ′(a)|

1
2 |f ′(b)|

1
2

(log |f ′(b)| − log |f ′(a)|)2
+

|f ′(a)|
(log |f ′(b)| − log |f ′(a)|)2

+
|f ′(a)|

(log |f ′(b)| − log |f ′(a)|)2

]

= η(b, a)

[
|f ′(b)|

1
2 − |f ′(a)|

1
2

log |f ′(b)| − log |f ′(a)|

]2

which completes the proof.

Theorem 4.2 Let K ⊆ R be an open invex subset with respect to η : K×K → R. Suppose that

f : K → R is a differentiable function. Assume q ∈ R with q ≥ 1. If |f ′|q is log-preinvex on K,

then for every a, b ∈ K the following inequality holds:∣∣∣∣∣∣∣
1

η(b, a)

a+η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣
≤ η(b, a)

 |f ′(a)|
1
2

2
1
p (p+ 1)

1
p q

1
q

(
|f ′(b)|

q
2 − |f ′(a)|

q
2

log |f ′(b)| − log |f ′(a)|

) 1
q

 .

Proof. By Hölder inequality and (3.2) in the proof of Theorem 3.1, we have∣∣∣∣∣∣∣
1

η(b, a)

η(b,a)∫
a

f(x)dx− f

(
2a+ η(b, a)

2

)∣∣∣∣∣∣∣
≤ η(b, a)


1
2∫

0

t |f ′(a+ tη(b, a))| dt+
1∫

1
2

(1− t) |f ′(a+ tη(b, a))| dt



≤ η(b, a)




1
2∫

0

tpdt


1
p


1
2∫

0

|f ′(a+ tη(b, a))|q


1
q

dt

+

 1∫
1
2

(1− t)pdt


1
p
 1∫

1
2

|f ′(a+ tη(b, a))|q dt


1
q
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≤ η(b, a)




1
2∫

0

tpdt


1
p


1
2∫

0

(
|f ′(a)|1−t |f ′(b)|t

)q
dt


1
q

+

 1∫
1
2

(1− t)pdt


1
p
 1∫

1
2

(
|f ′(a)|1−t |f ′(b)|t

)q
dt


1
q


= η(b, a)

 |f ′(a)|
1
2

2
1
p (p+ 1)

1
p q

1
q

(
|f ′(b)|

q
2 − |f ′(a)|

q
2

log |f ′(b)| − log |f ′(a)|

) 1
q

 ,

where 1
p + 1

q = 1.

Now, we give the following results connected with the left part of (1.1) for classical log-convex

functions.

Corollary 4.3 Under the assumptions of Theorem 4.1 with η(b, a) = b − a, the following in-

equality holds:∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f

(
a+ b

2

)∣∣∣∣∣∣ ≤ (b− a)

(
|f ′(b)|

1
2 − |f ′(a)|

1
2

log |f ′(b)| − log |f ′(a)|

)2

.

Corollary 4.4 Under the assumptions of Theorem 4.2 with η(b, a) = b − a, the following in-

equality holds: ∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f

(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)

 |f ′(a)|
1
2

2
1
p (p+ 1)

1
p q

1
q

(
|f ′(b)|

q
2 − |f ′(a)|

q
2

log |f ′(b)| − log |f ′(a)|

) 1
q

 .

5 An extension to several variables functions

In this section, we shall extend the Corollary 4.3 and Corollary 4.4 to functions of several

variables defined on invex subsets of Rn.

Let K ⊆ Rn be an invex set with respect to η : K ×K → Rn. For every x, y ∈ K the η-path

Pxv joining the points x and v := x+ η(y, x) is defined as follows

Pxv = {z : z = x+ tη(y, x) : t ∈ [0, 1]} .

Proposition 5.1 Let K ⊆ Rn be an invex set with respect to η : K ×K → Rn and f : K → R

is a function. Suppose that η satisfies Condition C on K. Then for every x, y ∈ K the function
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f is log-preinvex with respect to η on η-path Pxv if and only if the function φ : [0, 1] → R defined

by

φ (t) := f (x+ tη(y, x))

is log-convex on [0, 1] .

Proof. Suppose that φ is log-convex on [0, 1] and z1 := x+t1η(y, x) ∈ Pxv, z2 := x+t2η(y, x) ∈

Pxv. Fix λ ∈ [0, 1]. By (2.1), we have

f (z1 + λη(z2, z1)) = f (x+ ((1− λ) t1 + λt2) η(y, x))

= φ ((1− λ) t1 + λt2)

≤ [φ (t1)]
(1−λ)

[φ (t2)]
λ

= [f (z1)]
(1−λ)

[f (z2)]
λ
.

Hence, f is log-preinvex with respect to η on η-path Pxv.

Conversely, let x, y ∈ K and the function f be log-preinvex with respect to η on η-path Pxv.

Suppose that t1, t2 ∈ [0, 1]. Then, for every λ ∈ [0, 1] we have

φ ((1− λ) t1 + λt2) = f (x+ ((1− λ) t1 + λt2) η(y, x))

= f (x+ t1η(y, x) + λη(x+ t2η(y, x), x+ t1η(y, x)))

≤ [f (x+ t1η(y, x))]
(1−λ)

[f (x+ t2η(y, x))]
λ

= [φ (t1)]
(1−λ)

[φ (t2)]
λ
.

Therefore, φ is log-convex on [0, 1].

The following theorem is a generalization of Corollary 4.3.

Theorem 5.2 Let K ⊆ Rn be an invex set with respect to η : K ×K → Rn and f : K → R+

is a function. Suppose that η satisfies Condition C on K. Then for every x, y ∈ K the function

f is log-preinvex with respect to η on η-path Pxv. Then, for every a, b ∈ (0, 1) with a < b the

following inequality holds:∣∣∣∣∣∣∣
1

b− a

b∫
a

 s∫
0

f (x+ tη(y, x)) dt

 ds−

a+b
2∫

0

f (x+ sη(y, x)) ds

∣∣∣∣∣∣∣
≤ (b− a)

[
[f (x+ bη(y, x))]

1
2 − [f (x+ aη(y, x))]

1
2

log f (x+ bη(y, x))− log f (x+ aη(y, x))

]2
. (5.1)
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Proof. Let x, y ∈ K and a, b ∈ (0, 1) with a < b. Since f is log-preinvex with respect to η on

η-path Pxv by Proposition 5.1 the function φ : [0, 1] → R+ defined by

φ (t) := f (x+ tη(y, x)) ,

is log-convex on [0, 1]. Now, we define the function ϕ : [0, 1] → R+ as follows

ϕ (t) :=

t∫
0

φ (s) ds =

t∫
0

f (x+ sη(y, x)) ds.

Obviously, for every t ∈ (0, 1) we have

ϕ′ (t) = φ (t) = f (x+ tη(y, x)) ≥ 0.

Hence, |ϕ′ (t)| = ϕ′ (t). Applying Corollary 4.3 to the function ϕ implies that∣∣∣∣∣∣ 1

b− a

b∫
a

ϕ (t) dt− ϕ

(
a+ b

2

)∣∣∣∣∣∣ ≤ (b− a)

(
|ϕ′(b)|

1
2 − |ϕ′(a)|

1
2

log |ϕ′(b)| − log |ϕ′(a)|

)2

and we deduce that (5.1) holds.

Remark 5.3 Let φ (t) : [0, 1] → R+ be a function and q a positive real number, then φ is log-

convex if and only if the function φq (t) : [0, 1] → R+ is log-convex. Indeed for every x, y ∈ [0, 1],

it is easy to see that [
[φ (x)]

1−t
[φ (y)]

t
]q

= [φq (x)]
1−t

[φq (y)]
t
.

Therefore, if t ∈ [0, 1] , we have

φ (tx+ (1− t)y) ≤ [φ (x)]
1−t

[φ (y)]
t

if and only if

φq (tx+ (1− t)y) ≤ [φq (x)]
1−t

[φq (y)]
t
.

The following theorem is a generalization Corollary 4.4 to functions several variables.

Theorem 5.4 Let K ⊆ Rn be an invex set with respect to η : K ×K → Rn and f : K → R+

is a function. Suppose that η satisfies condition C on K. Then for every x, y ∈ K, the function

f is log-preinvex with respect to η on η-path Pxv. Then, for every p > 1 and a, b ∈ (0, 1) with

a < b the following inequality holds:∣∣∣∣∣∣∣
1

b− a

b∫
a

 s∫
0

f (x+ tη(y, x)) dt

 ds−

a+b
2∫

0

f (x+ sη(y, x)) ds

∣∣∣∣∣∣∣
≤ (b− a)

 [f (x+ aη(y, x))]
1
2

2
1
p (p+ 1)

1
p q

1
q

(
[f (x+ bη(y, x))]

q
2 − [f (x+ aη(y, x))]

q
2

log f (x+ bη(y, x))− log f (x+ aη(y, x))

) 1
q

 , (5.2)
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where 1
p + 1

q = 1.

Proof. Let x, y ∈ K and a, b ∈ (0, 1) with a < b. Suppose that ϕ and φ are the functions which

are defined in the Theorem 5.2. Since |ϕ′| : [0, 1] → R+ is log-convex on [0, 1], by Remark 5.3

the function |ϕ′|q is also is log-convex on [0, 1]. Now, by applying Corollary 4.4 to function ϕ

we get ∣∣∣∣∣∣ 1

b− a

b∫
a

ϕ(x)dx− ϕ

(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)

 |ϕ′(a)|
1
2

2
1
p (p+ 1)

1
p q

1
q

(
|ϕ′(b)|

q
2 − |ϕ′(a)|

q
2

log |ϕ′(b)| − log |ϕ′(a)|

) 1
q


and we deduce that (5.2) holds. The proof is complete.
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