

 Mugla Journal of Science and Technology, Vol 2, No 1, 2016, Pages 98-101

Mugla Journal of Science and Technology

98

DESIGNING A PIPELINE WITH BIG DATA TECHNOLOGIES FOR BORDER
SECURITY

Fatih AYDEMİR1*, Aydın ÇETİN2

1 STM Savunma Teknolojileri Muhendislik ve Tic. A.S., Ankara, Turkey
faydemir@stm.com.tr

2Department of Computer Engineering, Faculty of Technology, Gazi University, 06500 Ankara, Turkey
acetin@gazi.edu.tr

Received: 29.04.2016, Accepted: 02.05.2016
*Corresponding author

Abstract

Developing technology, communication and transportation facilities have led borders to the gradual disappearance. The incidents taking
place in different countries go beyond the limits and being felt by large audiences. Solutions to rapidly increasing terrorist attacks and
internal turmoil caused security problems in recent years which have become very complicated. Protecting and controlling the borders,
finding rapid and comprehensive solutions to illegal border passing problems have become a major problem in many countries. When
considering the scope of the border security, it would be understood to examine the data which comes at different times from different
sources and types in real time. This can be achieved by a collaboration of different principles. In addition, when large-scale unstructured
data analysis also considered for a comprehensive solution, it would be a rational method to develop a pipeline using the Big Data
technologies. In this study, we aim to achieve cost-effective, robust, scalable and flexible system to solve the border security problems.
The use of Lambda Architecture which provides real time data processing and batch processing capabilities was investigated in border
security applications. System development was explained and all information on its principles was provided.
Keywords: Apache Spark, Lambda Architecture, Apache Kafka, Cassandra, Real-time Data Processing, Batch Data Processing

SINIR GÜVENLİĞİ İÇİN BÜYÜK VERİ TEKNOLOJİLERİ İLE BORU HATTI
TASARIMI

Özet

Gelişen teknoloji, iletişim ve ulaşımdaki kolaylıklar sınırların yavaş yavaş ortadan kalkmasına yol açmıştır. Bu sebeple farklı
coğrafyalarda gerçekleşen olaylar, sınırların ötesine geçerek etkisini büyük kitlelere hissettirmektedir. Sınırları denetlemek, korunmak,
kaçak geçişlere karşı hızlı ve kapsamlı çözümler bulmak birçok ülkenin ana problemi haline gelmiştir. Sınır güvenliğinin kapsamı
düşünüldüğünde; farklı zamanlarda, farklı kaynaklardan ve farklı tiplerde gelen verinin, gerçek zamanlı olarak incelenmesi gerektiği
anlaşılacaktır. Bu da farklı prensiplerin bir arada çalışması ile mümkündür. Bunların yanı sıra yapılandırılmamış büyük ölçekli veri
analizi de göz önüne alındığında, kapsamlı bir çözüm için Büyük Veri (Big Data) teknolojilerinden yararlanarak boru hattı (pipeline)
geliştirmek akılcı bir yöntem olacaktır. Bu çalışmada, sınır güvenliği için gerçek zamanlı akan veri ve yığın veri üzerinde analiz yapmayı
sağlayan Lambda Mimarisi (Lambda Architecture) yetenekleri araştırılmaktadır. Sınır güvenliği problemi çözümüne yönelik geliştirilen
uygulama açıklanarak sistemin çalışması hakkında bilgi verilmektedir.
Anahtar Kelimeler: Apache Spark, Lambda Architecture, Apache Kafka, Cassandra, Gerçek zamanlı veri işleme, Yığın Veri işleme

1 Introduction

The emergence of new threats and methods have led to the
displacement of existing threats as a result of having the rapid
developments in technology, communication, transportation
and armament opportunities. Technical and technological
changes in the military field, divergences in the management
layer, problems such as negative effects of economic factors on
individuals, societies and states have increased the crime
initiatives from threats which put individuals in a difficult
situation about ensuring the safety of their lives and properties.
Therefore, units which are responsible of ensuring the security
need new approaches and cautions to provide an effective
service [[1]].

When security considered as a multi-layered architecture, the
outermost layer would be the protecting the area where people

live against external threats. Therefore, security could be called
that starts from the ‘borders’. Ensuring the security of a region
is possible with the coordinated operation of the all related
units which work in different areas and systems.

In studies about the border security, it’s emphasized that the
security can be ensured by the integration and collaboration of
the underground and surface sensors, low and high resolution
cameras, unmanned aerial vehicle (UAV), the satellite and the
radar [[2]]. As a result of a collaboration of different disciplines,
the data can be in different formats, in different sizes and
obtained at different time intervals. It is difficult for widely used
database management systems and architectures to store high
volumes of data and analyze unstructured data with high
speeds and variability. Big Data technologies can provide
significant advantages in solving these addressed complex

mailto:acetin@gazi.edu.tr

Fatih AYDEMİR, Aydın ÇETİN
Mugla Journal of Science and Technology, Vol 2, No 1, 2016, Pages 98-101

99

problems. Big Data concept can be explained as storing and
querying data in a meaningful, economic and scalable way [[3]].

A border controlling system should have the following features
to solve the major problems:

 Doing the ‘clean up’ and low-latency
configuration/interpretation on the flowing data,

 Performing the ‘recording/storing’ and ‘query
processing’ in a high speed,

 To be able to give instant information to users and
providing the re-examination of the records.

In this study, we aim to achieve cost-effective, robust, scalable
and flexible system to solve the border security problems. The
rest of the paper, structured as follows. In Section 2,
Architectural Design and Methodology were given in detail. In
Section 3, Experiments and Findings were presented and the
Conclusions of the study were submitted in Section 4.

2 Architectural Design and Methodology

The preparation rules given below should be followed: It is
recommended that you either use the template or stick to a
sample file in order to meet the specifications for the format of
MJST papers.

There are many available technologies, architectures and
frameworks for developing a pipeline. A pipeline should
possess the following properties: working with different
sources, having low latency transport mechanism, avoiding loss
of data during data transmission and recording, having a high
data processing speed and presenting the results in a way that
is readable and understandable manner.

The software components in the system should be separated in
accordance with their purpose of use and be able to work
without being aware of each other's work. In the framework of
this logic, we have designed the main backbone of system with
Event -Based Architecture (EDA) [[4]]. Thus, each component
has been considered as a loosely coupled and singly-
responsible structure. Data sender and data receiver do not
have a direct relationship between components transmitting
and receiving data in EDA. As shown in the Fig. 1, workflow is
performed with events transmitted over Kafka.

Ak
ka

 A
ct

or
s

...

Spark Streaming Kafka

Spark
&

Spark Streaming

Spark Cassandra Connector

Cesium
Cassandra

Cluster

Sensor Camera UAV

Apache Kafka Cluster

Apache Kafka Cluster

NodeJS

Figure 1. System architecture.

In the study, we aimed to build a distributed, robust, coherent,
sensible, large-scale and low-latency data pipeline. To achieve
this aim, a design based on the Lambda Architecture (LA) is
proposed with following components;

 Apache Kafka for the data transmission,

 Apache Spark to process in real-time data and batch
data,

 Apache Cassandra for storing the data,

 Nodejs to provide processed data to the end user,

 Cesiumjs for 3-dimensional representation of the
object on the map.

Apache Kafka is an open-source framework which implements
publish-subscribe approach over TCP/IP and records them in
the same method with log registers [[5]]. Apache Spark is an
open source cluster with the capability of computing
framework build and ease of use, complex analytics and speed
[[6]]. It provides an API based on micro batch style called the
resilient distributed dataset (RDD). Cassandra is a NoSQL
distributed database management system with column based
structure, low latency, open source code and distributed
database designed to handle large amounts of data [[7]]. Nodejs
is a cross-platform runtime environment letting us to develop
server-side applications using JavaScript programming
language and having a mechanism with open source code, event
based and non-blocking input/output (I/O) [[8]]. Cesiumjs is an
open-source library which is used for 3D globes and 2D maps
in web browser [[9]].

2.1 Real-time Data Flow

It is difficult to predict the magnitude and frequency of data
flow in real-time processing. Therefore, during the
transmission of data, bottleneck may occur between the sender
and the receiver. Consequently, the J. Boner et.al, have claimed
an asynchronous stream processing with non-blocking back
pressure in the Reactive Manifesto [[10]] issued in 2014. After
the Manifesto was published, many systems and tools which
support Reactive Streams have been developed. One of the
reactive streams tool has been developed with Akka Library is
called as Akka Streams. The difference between sending and
receiving data speed should be at minimum level for the system
integrity and consistency. Thus, we choose the Akka Streams on
the TCP Client/Server model which we use the retrieving data
from the source. TCP server publishes the data via Kafka when
received data. And also KafkaAkka Consumer and KafkaAkka
Producer classes were implemented using Akka library
providing explicit locking and thread management. These
KafkaAkka classes were used for all messaging operations in
the system.

2.2 Data Modelling and Decomposition

When it comes to border security, it won't be enough to make
just real-time processing. Working on the batch data helps us to
retrieve useful information by removing irrelevant data,
grouping data and making sensible information from them. In
data modelling and cleaning process to provide this capability
to our system, we worked based on Lambda Architecture which
is created by Nathan Marz and James Warren [11]. We
preferred Apache Spark to make distributed computing on the
large-scale data. These tools with real-time data and batch data
processing capabilities keep requests in the queue and make
them pending until the action function is called providing quick
realization of the next process by writing the process results to
the memory. The Spark Streaming is the component that
processes the real-time data received from different sources.
Spark Streaming creates Discretized Stream (Dstream) for each
data flow. DStream may be expressed as an array made on
micro batch series (RDD).

Fatih AYDEMİR, Aydın ÇETİN
Mugla Journal of Science and Technology, Vol 2, No 1, 2016, Pages 98-101

100

Spark Streaming can be easily integrated with many messaging
system and can receive data via multiple topic simultaneously.
There are two methods which can be used for data flow
between Kafka and Spark. These are Direct Approach - no
receivers and Receiver-based Approach [12]. In the study,
Direct Approach has been chosen because of its ease of
installation, data lossless operation and its parallel processing
characteristics without custom settings.

2.2.1 Lambda Architecture

Lambda architecture (LA) is data processing architecture
designed to handle large amounts of data using the advantages
of stream processing and batch processing [13]. LA consists of
three main layers. These are batch layer, speed layer and
serving layer. The structure of the LA is given in Fig.2.

query

real-time view real-time view

speed layer

serving layer

batch view

batch view
master
dataset

batch layer

query

new
data

Figure 2. The LA structure.

As it can be seen from the Fig.2, all data entered into the system
is sent to both speed layer and batch layers. There are two main
tasks of the batch layer; namely, to check the master data set
and to create batch pieces. Batch pieces are made available for
querying by being indexed in the serving layer. Huge delays
arising from the update process at the presentation layer are
handled by speed layer. It acts on the last incoming data.
Inquiries can be carried out by using the serving layer and
speed layer.

2.3 Storage and Presentation

By using Spark Cassandra Connector, not only Spark RDDs can
be managed like Cassandra tables, but also Cassandra tables
can be managed like Spark RDDs. Therefore, RDDs which are
formed from the Map/Reduce processing results can be written
to Cassandra database. The Spark Application implemented to
process data stores RDDs by using these abilities.

Processed data representation for the information to end-users
is also included in this study. Spark saves the processed data in
Cassandra and publish simultaneously with Kafka. The module
developed using Nodejs serves as a web server as well as Kafka
consumer. Kafka doesn't delete the records after sending them
to receiver. However; it keeps them during the period of time
specified in the configuration file. Thus, a mechanism such as
long polling is established. When clients start listening to the
related topic, it takes all historical records. That means, when
Nodejs consumer is connected to Kafka, it takes all retroactive
data. Socket IO has been chosen as a communication model
between clients and web server. Web client converts the data
received via Socket.IO into 3D Cesium object and allows the
examination of historical data by keeping in the form of time
series.

3 Experiments and Findings

An architecture designed to meet the needs of complex systems
should be;

 fault-tolerant,

 stable against to human and hardware errors,

 supportive a wide range of different uses,

 scalable and extensible,

 fast to read, write and update operations.

Therefore, our focus in this study was to build an alternative
infrastructure to support border security rather than the
accuracy of analysis results or performance assessment. The
system workflow is as follows:

 read events from Kafka

 deserialize data

 filter irrevalant data

 create a projection to related fields

 store and serve

The analysis of data received from sensors or cameras or
unmanned aerial vehicles (UAVs) are important to ensure the
area of security. Therefore, in order to test the functionality of
the implemented pipeline, at least two different types of data
should be processed. So, we have developed TCP client
generating sensor data in JSON format as the primary source.
As secondary source, we have developed a module which reads
video frames and sends them via Kafka.

A sensor data includes twenty different information, such as
warnings, altitude, latitude, longitude, remaining battery life,
range, identity (id), description, time. The data in JSON format
transmitted via Kafka is formatted that consists of sensorId,
timestamp, latitude, longitude, range, motion detection status
and time. Data modelled are grouped by the sensorId, and then
are sorted by the time of submission (Map). Those which
cannot be observed changes from the data ordered by time will
be deleted (Reduce). As shown in the Fig. 3, a primary key is
obtained adding time information to combination of sensorId
and date information. Using the primary key is generated daily
a row record for each sensor and thus the query operations
happen quickly.

sensorId date event_time
Other

colums

Create table Sensor (

sensorId text,

date text,

event_time timestamp,

...

PRIMARY KEY ((sensorId,date), event_time));

Figure. 3 Sensor Table.

We used JavaCV to analyze image data received as byte array.
JavaCV is a library that uses wrapped classes from computer
vision libraries via JavaCPP. In image analysis, it is aimed to find
faces in each frame, there is no need for a procedure such as
Map or grouping of frames. The input video stream is encoded
with the H.264 encoder and has 23fps frame rate. Each frame at
1280×720 resolution is consumed by FaceDetector class
implemented using Haar feature-based cascade classifiers.
Frame which includes at least a face is stored, otherwise it is
deleted. The image data is saved to Cassandra with primary key

Fatih AYDEMİR, Aydın ÇETİN
Mugla Journal of Science and Technology, Vol 2, No 1, 2016, Pages 98-101

101

compounded with the date portion of the timestamp and the
sensorId.

Figure 4. Map screenshot.

Sensor data, shown on the map with Cesium is kept in the form
of time series according to the time of submission with their
coverage. When updating sensors, changes are matched with
time and are added to objects. Sensors are expressed by green.
Sensors are expressed by red line, if motion detected.

Cesium has a module specialized for sensors. 3D sensor data
that can be expressed in different shapes can stored in memory
in the form of time series. Although this feature provides great
convenience, it has to run on WebGL based browsers because
Cesium is based on WebGL.

Spark is a powerful, fast and robust platform. One of the reasons
for the preference is compatible work with the functional
programming languages. However, there is a high probability
to encounter problems in complex applications. We
encountered problems about Spark's object serialization and
management of life cycle during development process. We got
the java.io.NotSerializableException in application stack trace.

Worker

Executor

task task

Driver Program

SparkContext

job job

Worker

Executor

task task

Cluster Manager

Figure 5. Spark distributed computing mechanism.

As it can be seen from Fig. 5, Spark jobs created on the driver
are distributed to workers. The number of jobs is related to the
edited logic. The number of tasks is related to the data partition.
So, RDD processes work on driver, RDD partitions work on

executer. We had to create Kafka objects at every partition to
send data which through from Map/Reduce process. If it
expressed mathematically; let's consider we had 1000 events
per second, 2 second batch range and 16 partitions. Although
Kafka will send only 125 posts, there will be instances created
16 times in every 2 seconds. To get rid of this transaction costs
derived from Kafka manufacturer, Serializable interface class
should be coded and investigated in future studies.

4 Conclusion

In this study, we have developed a system that is consistent,
durable, scalable and capable of distributed computing, to help
ensure border security. Moreover, the developed application
has a significant potential to improve the current practice in
emergency related operations as well. This system for real-time
streaming data and applications requiring analysis of batch
data is a set of interoperable technologies. The evaluation of the
performance of the developed system under these
circumstances including additional Hadoop Distributed File
System (HDFS) for storing results of the image analysis is under
progress and Druid will be integrated for storing sensor data in
the form of time series for comparative analysis with
Cassandra. A detailed report will be prepared about the
performance differences before on site integration of the
system.

5 References

[1] Aksu, M. and Turhan, F. “New Threats, Expansion of
Security Dimensions and Human Security”, International
Journal of Alanya Faculty of Business, Vol. 4, 69-80, 2012

[2] Eker, G. and Yılmaz, G. “Providing Environmental Security
Using Wireless Sensor Networks”, TBV BBMD, 64-71, 2013

[3] Demchenko, Y., de Laat, C. and Membrey, P, “Defining
architecture components of the Big Data Ecosystem”,
Collaboration Technologies and Systems (CTS), 2014, 104-
112

[4] Engel, Y., and Opher, E., “Towards proactive event-driven
computing”, 5th ACM international conference on
Distributed event-based system (DEBS '11), 2014, 125-136

[5] Kreps, J., Narkhede, N. and Rao, J., “Kafka: A distributed
messaging system for log processing”, Proceedings of 6th
International Workshop on Networking Meets Databases,
2011

[6] Zaharia, M., Das, T., Li, H., Shenker, S. and Stoica, I.,
“Discretized streams: an efficient and fault-tolerant model
for stream processing on large clusters”, 4th USENIX
conference on Hot Topics in Cloud Computing, 2012

[7] Chebotko Kashlev, A. and Shiyong, L., “A Big Data Modeling
Methodology for Apache Cassandra”, Big Data (BigData
Congress), IEEE International Congress, 2015, 238-245

[8] Nodejs, https://nodejs.org/en/about/
[9] Cesiumjs, https://cesiumjs.org/
[10] The Reactive Manifesto,

http://www.reactivemanifesto.org/
[11] Nathan Marz and James Warren, Principles and best

practices of scalable realtime data systems, Manning, 2015,
328 pages

[12] Spark Streaming + Kafka Integration,
http://spark.apache.org/docs/latest/streaming-kafka-
integration.html

[13] Kiran, M., Murphy, P., Monga, I., Dugan, J. and Baveja, S.,
“Lambda architecture for cost-effective batch and speed
big data processing.” Big Data (Big Data Congress), IEEE
International Conference, 2015, 2785-2792

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Demchenko,%20Y..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.de%20Laat,%20C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chebotko,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7194705
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7194705
https://nodejs.org/en/about/
http://www.reactivemanifesto.org/
http://spark.apache.org/docs/latest/streaming-kafka-integration.html
http://spark.apache.org/docs/latest/streaming-kafka-integration.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kiran,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Murphy,%20P..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Monga,%20I..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dugan,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Baveja,%20S.S..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7347101
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7347101

