
 Mugla Journal of Science and Technology, Vol 3, No 1, 2017, Pages 31-34

Mugla Journal of Science and Technology

31

MOBILE ROBOT CONTROL WITH ANDROID DEVICE SENSORS BY USING ROS

Abdullah Erkam Kırlı1, Mustafa Burak Dilaver1, Furkan Çakmak1*

1Computer Engineering Department, Electrical Electronics Faculty, Yildiz Technical University, 34220, Istanbul, Turkey
erkamkrl@gmail.com, mbdilaver@gmail.com, furkan@ce.yildiz.edu.tr

Received: 05.12.2016, Accepted: 02.06.2017
*Corresponding author

doi: 10.22531/muglajsci.272475

Abstract

In this study, a mobile device with Android operating system was used to control a six-wheel differential drive mobile robot. In the literature, it is seen that
there is no open source and comprehensive study in this matter, so that this study aimed to give a sample work for future applications. The Robot Operating
System (ROS) framework has been established on the mobile robot and the operations have been implemented on the ROS, while on the Android device,
the improvements have been made using the ROS libraries. While the camera image and the calculated map information from the mobile robot are
transferred to the Android device via the ROS, vice versa the data that controls the robot actions are transferred. The Ubuntu operating system on the
Raspberry Pi 2 microcontroller used on the mobile robot was used with the Indigo version of the ROS. In addition, on the Android device, using the
accelerometers and touch tones, the control of the robot has been provided in 2 different ways. Thus, it is aimed to ensure mobile robot control effectively
in teleoperation mode.
Keywords: Mobile Robot Control, ROS, Android OS, Raspberry Pi Application

ROS ÜZERİNDEN ANDROID CİHAZ DUYARGALARI YARDIMIYLA MOBİL
ROBOT KONTROLÜ

Öz

Bu çalışmada, üzerinde Android işletim sistemi yüklü bir mobil cihaz yardımıyla 6 tekerlekli diferansiyel sürüşlü bir mobil robotun kontrolü ele alınmıştır.
Literatürde, bu konuda tam manasıyla açık kaynaklı ve kapsamlı bir çalışma yapılmadığı görüldüğünden, örnek bir çalışma ortaya konmak istenmiştir.
Mobil robot üzerinde ROS (The Robot Operating System) çatısı kurulmuş ve işlemlerin ROS üzerinden gerçekleştirilmesi sağlanmışken, Android cihaz
üzerinde ise ROS kütüphanelerinden yararlanılarak geliştirmeler yapılmıştır. Mobil robot üzerinden alınan kamera görüntüsü ve hesaplanan harita bilgisi
ROS üzerinden Android cihaza aktarılırken, tam tersi yönde robotun sürüşünü kontrol eden veriler aktarılmaktadır. Mobil robot üzerinde kullanılan
Raspberry Pi 2 mikrodenetleyicisi üzerinde Ubuntu işletim sistemi, ROS’un Indigo sürümüyle birlikte kullanılmıştır. Ayrıca Android cihaz üzerinde
ivmeölçer ve dokunmatik duyargaları kullanılarak robotun kontrolü kullanıcı seçimine bırakılarak 2 farklı şekilde gerçekleştirilmiştir. Böylece mobil
robot kontrolünün teleoperation modda efektif bir şekilde gerçekleştirilmesi amaçlanmıştır.
Anahtar Kelimeler: Mobil Robot Kontrolü, ROS, Android OS, Raspbery Pi Uygulaması

1 Introduction

The aim of this work was to provide control of an installed
robot with the ROS framework [1] using accelerometers and
touch sensors on a mobile device with an Android operating
system. As an open source, the ROS, which is constantly
evolving, has demonstrated that the Android environment can
be used to communicate with each other over a wireless
connection (Wi-Fi), as well as testing the libraries of ROS that
have been put the experimental version on market. Images
taken with a webcam on the robot are transferred to the
Android device via the ROS nodes and reflected in the user
interface on the Android device. In addition, the Hokuyo URG-
04LX model laser sensor was used to scan up to 4 meters of
180° angle, and these scan results were presented to the user
through the Android device. Using the Laser Scan Matcher
(LSM) [2] method, the robot position is instantly informed to
the user and gMapping [3] from the simultaneous localization
and mapping algorithms (SLAM) is executed by including the
position information and the generated results are transferred
to the Android device through the same interface.

On the wiki pages of the ROS, there are several libraries for
controlling the mobile robot from the joystick or keyboard [4].
The main motivation for achieving this work is that there are

no instances that can work with other operating systems
(Windows, iOS, etc.) running on Android or mobile devices.

Section 2 includes a detailed examination of the robot platform
along with the equipment used and features of the Android
device, used method in this project explains in Section 3,
implementation and experimental results are deal with in
Section 4, and finally evaluation and conclusion part are given
in Section 5.

2 Robot Platform, Hardware and Android Device

The robot platform, hardware used in this study and device
with the Android operating system in which the
communication is established have been investigated in the
subheadings.

One of the picture of the robot platform is given in Figure 1. It
can be seen that the laser sensor, used for SLAM, is placed in
front of the robot to ensure not obstruct laser sensor’s angle of
scan. Camera, used for safe driving, is placed the highest point
of the robot to enlarge angle of view. Thus, operator can drive
mobile robot more effective. There are two button in front of
the robot to use in emergency situations. That buttons cut the
power off between battery and the wheels to provide more

Abdullah Erkam Kırlı, Mustafa Burak Dilaver, Furkan Çakmak
Mugla Journal of Science and Technology, Vol 3, No 1, 2017, Pages 31-34

32

flexibility in case there will be an emergency. The wheels are
not fixed to the robot's body to use the robot in rugged terrains.

Figure 1. Robot platform used in the study.

2.1 Raspberry Pi 2

Raspberry Pi 2 (RP2) is a single board and credit card-sized
computer with a 4-core processor and 1 GB RAM capacity.
Processing power of RP2 is quite good enough, especially the
conversion of data from a laser sensor into a map. Ubuntu 14.04
LTS operating system has been installed on RP2 and used for
operations such as giving velocity command to the robot,
camera and laser data retrieval and communication with
Android device.

2.2 Arduino Uno

In this study, Arduino Uno was used to communicate with RP2
and the shield which control the motors and to read data from
a sonar sensor, used for measuring distance between obstacles
and robot’s back.

2.3 Robot Platform

The Dagu Wild Thumper 6WD [5] robot platform was chosen
for this study, because besides all of adaptive properties, it has
lots of empty areas for electronic cards and batteries and the
driving strategy of this platform (differential-driven) is more
proper for us.

2.4 Hokuyo Laser Range Finder

The Hokuyo URG-04LX laser sensor is used on the robot
platform. This laser sensor has a 180° scan angle and it can
measure up to 4 meters. The laser is used for building a map.
Mapping method, described in detail in Chapter 3, was
performed more accurint if the frequency of scans is high. This
laser sensor is good enough to be used for gMapping.

Of course, one of the most important reasons for preference is
compatibility with ROS.

2.5 RBG Camera

There is no specific feature that stands out in favor of the web
camera. The same operations can be done in the same way with
another camera if network traffic of that camera is not intensive
(reviewed in chapter 4). Specifically, the model of webcam used
in this work is Everest ATW-M10 and can display images at
1280x960 with 30 fps.

2.6 Battery

Main text should be written in Cambria font and 9 pt. In special
cases, e.g. making an emphasis, other types of fonts can also be
used.

2.7 Circuit Diagram

The connection of the hardware elements on the robot platform
to each other is shown in Figure 2.

The voltage from the LiPo battery is reduced to 5V with the aid
of one regulator to feed RP2. The Arduino Uno is connected to
the Pololu motor drive shield via the USB port on the RP2 and
the pins on it. The motors of the robot platform are connected
to the h-bridge, so that the same voltage is applied to the three
wheels on the left and on the same three wheels on the right.

Likewise, the 12V voltage required for the Hokuyo laser sensor
to operate is supplied via a regulator and then connected to the
RP2 via USB to send the scan data. RP2 card doesn’t have any
Wi-Fi antenna. So, an external Wi-Fi dongle is connected to RP2
to provide a network connection between the robot platform
and the Android device.

Figure 2. The connection of the hardware elements.

2.8 Android Device

During this study, Asus Memopad 7 with Android 5.0 operating
system, which is shown in Figure 3, is used. Besides multi touch
feature, this device has accelerometers sensor. This sensor’s
data is used for driving the robot with air gesture.

Figure 3. Asus Memopad 7.

The key features of the used Android device are listed in Table
1.

Table 1. Android device features.

Processor Quad-core 1.2 GHz Cortex-A7
Memory 1 GB
Graphic

Processor
PowerVR SGX544

Capacity 8 GB
Screen Size 7.0"
Resolution 800 x 1280 pixels

Abdullah Erkam Kırlı, Mustafa Burak Dilaver, Furkan Çakmak
Mugla Journal of Science and Technology, Vol 3, No 1, 2017, Pages 31-34

33

3 Methods Used

The complementary methods for controlling the mobile robot
on teleoperation mode via Android device are given in
subheadings. Operator must know where the robot is at a
certain time to give drive command more accurate. The
information of robot position is called as odometry. There are a
lot of odometry extraction method in literature. These can be
listed as follows. The first one is wheel odometry. This type of
odometry can produce if only there is encoder on the wheels.
Compare to other types, this is not good enough to use in
mapping methods. Another one is visual odometry which are
extracted from sequential images provided from a camera. The
third one is obtained from laser scans. In this study, odometry
information is produced from laser scans using Laser Scan
Matcher algorithm.

3.1 Laser Scan Matcher (LSM)

Laser Scan Matcher is a method that produced odometry
information as a result of matching the laser scans received in
consecutive time intervals to each other. It is aimed to increase
the convergence of the odometry results produced by LSM to
the mapping algorithm and to gain from the calculation time.

The LSM algorithm, which is used in the study and shared codes
as an open source in the ROS repository, is a point-to-line
metric Iterative Closest Point (PLICP), an improved version of
the Iterative Closest Point (ICP) method [2].

The ICP algorithm is an iterative method used to calculate
trans-rotation (rotation 𝑅(𝜃), translation 𝑡) at the {𝑝𝑖} point
recorded on the 𝑆𝑟𝑒𝑓 reference surface. From the given set of
{𝑝𝑖}, the recorded 𝑞 is as given by the trans-rotation value in
Equation (1).

𝑝 ⊕ 𝑞 = 𝑝 ⊕ (𝑡, 𝜃) ≜ 𝑅(𝜃)𝑝 + 𝑡 (1)

The ICP tries to find the value of 𝑞 which minimizes the distance
between the transformed point 𝑝𝑖 and the Euclidean projection
to the reflections 𝑆𝑟𝑒𝑓 . The ICP minimization function is like
that given by (2). Here, ∏{𝑆𝑟𝑒𝑓 , 𝑝}, 𝑆𝑟𝑒𝑓 represents the
Euclidean projection to the ref.

min
𝑞

∑ ‖𝑝𝑖 ⊕ 𝑞 − ∏{𝑆𝑟𝑒𝑓 , 𝑝𝑖 ⊕ 𝑞}‖
2

𝑖

 (2)

There is no closed form solution for Equation (2). Thus, the

initial 𝑞0 value can be generated based on the trans-rotation

value as given by the iterative constraint function as in

Equation (3).

min
𝑞𝑘+1

∑ ‖𝑝𝑖 ⊕ 𝑞𝑘+1 − ∏{𝑆𝑟𝑒𝑓 , 𝑝𝑖 ⊕ 𝑞𝑘}‖
2

𝑖

 (3)

Different ICP approaches can be given for different ∏{𝑆𝑟𝑒𝑓}
definitions. The PLICP algorithm generates a closed form
solution to give a nearest linear distance to a given point. While
the point-dot recording approach converges linearly, PLICP
converges quadratically and appears to be given by the
constraint function in Equation (4). 𝑛𝑖

𝑇 value is used as a
transpose of a given point to the nearest normal line of the
reference line.

min
𝑞𝑘+1

∑(𝑛𝑖
𝑇[𝑝𝑖 ⊕ 𝑞𝑘+1 − ∏{𝑆𝑟𝑒𝑓 , 𝑝𝑖 ⊕ 𝑞𝑘}])2

𝑖

 (4)

The PLICP algorithm can be defined as shown below to denote
𝑦𝑡−1 reference laser scan, 𝑦𝑡 second laser scan, 𝑞0 initial trans-
rotation value, 𝑖 second laser scan index, 𝑗 reference laser scan
index and k iteration count.

Algorithm PLICP

Input: 𝑦𝑡−1, 𝑦𝑡 , 𝑞0

𝑆𝑟𝑒𝑓 ← 𝑦𝑡−1 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑘 ← 0

𝑟𝑒𝑝𝑒𝑎𝑡

 𝑝𝑖
𝑤 ← 𝑝𝑖 ⊕ 𝑞𝑘

 𝑗1
𝑖 , 𝑗2

𝑖 ← 𝑝𝑖
𝑤(𝑗1

𝑖 , 𝑗2
𝑖 ∊ 𝑦𝑡−1)

′
𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑡𝑤𝑜 𝑝𝑜𝑖𝑛𝑡

 𝐶𝑘 ← 𝑎𝑙𝑙 〈𝑖, 𝑗1
𝑖 , 𝑗2

𝑖 〉

 𝐶𝑘
′ 𝑐𝑙𝑒𝑎𝑟 𝑜𝑢𝑡𝑙𝑖𝑒

 𝐽(𝑞𝑘+1, 𝐶𝑘) ← ∑ (𝑛𝑖
𝑇[𝑅(𝜃𝑘+1)𝑝𝑖 + 𝑡𝑘+1 − 𝑝𝑗1

𝑖])2

𝑖

 𝐽′ 𝑚𝑖𝑛𝑖𝑚𝑢𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 𝑞𝑘+1

 𝑘 ← 𝑘 + 1

𝑢𝑛𝑡𝑖𝑙(𝑚𝑎𝑘𝑠_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟) 𝑜𝑟 (𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒)

Output: 𝑞

3.2 gMapping

GMapping [3] is one of the Simultaneous Localization and
Mapping algorithms which are used in a lot of robot research.
GMapping is a method that uses only the laser distance
measurement sensor and passes to the mapping steps after
selecting the optimum starting point with the help of odometry
information produced by the LSM.

GMapping is based on the Rao-Blackwellized Particle Filter
(RBPF) [6], a multi-particle grid-based method. Each particle
holds its own belief in the previous position of the robot and
builds its own map. Each incoming laser scan updates the
beliefs of the particles. The beliefs of the particles are based on
the robot position and orientation. In addition, gMapping uses
its own laser scan mapping method in the optimization step.
The gMapping algorithm implemented on the ROS and used in
the scope of the study consists of 6 important steps as shown
below.

1. Measurement acquisition: A new laser scan is taken.
2. Scan Matching: Performed by pairing of previous and

current laser scans.

3. Sampling: Previously taken {𝑥𝑡−1
(𝑖)} particles help

and suggested distribution 𝜋(𝑥𝑡|𝑧1:𝑡, 𝑢0:𝑡)to perform

best {𝑥𝑡
(𝑖)} particles are calculated.

4. Weighting: Each particle in (5) as given one 𝑤(𝑖)
weight is calculated.

𝑤(𝑖) =
𝑝(𝑥𝑡

(𝑖)|𝑧1:𝑡 , 𝑢0:𝑡)

𝜋(𝑥𝑡
(𝑖)|𝑧1:𝑡 , 𝑢0:𝑡)

 (5)

5. Re-Sampling: Particles whose weight is below a
certain threshold value are redrawn from heavy
particles.

6. Mapping: Each position example 𝑥𝑡
(𝑖) and all

observations 𝑝(𝑚𝑡
(𝑖)|𝑥1:𝑡

(𝑖), 𝑧1:𝑡) based on 𝑚𝑡
(𝑖) map

is calculated.

The gMapping algorithm produces maps in occupancy grid type
which supported by the ROS. This type of fusing data from
different sensor sources can be held in a high resolution grid.
However, running gMapping in large scale areas, where the
number of grids is increasing, is considerably more costly than
small areas. The occupancy rate of a grid 𝑝(𝑥, 𝑦) can be found
as given by the number of grid points that the grid has in total
in Equation (6).

𝑝(𝑥, 𝑦) =
#𝑓𝑢𝑙𝑙

#𝑓𝑢𝑙𝑙 + #𝑒𝑚𝑝𝑡𝑦
 (6)

Abdullah Erkam Kırlı, Mustafa Burak Dilaver, Furkan Çakmak
Mugla Journal of Science and Technology, Vol 3, No 1, 2017, Pages 31-34

34

4 Application and Experimental Results

The Android application and experimental results are
discussed in this section.

4.1 Android Application

The developed Android application interface shows images
from the camera on the robot in the top half of the screen, and
map data generated using laser sensor in the bottom half.
Teleoperating drive can be done with the joystick interface or
accelerometer, which operates via the touch sensor. The
maximum speed of the robot is set so that it can be gradually
changed by four buttons at the bottom of the interface. An
image of the interface is given in Figure 4.

Figure 4. Android application interface.

4.2 Application

The robot platform was driven in the circular path given below
and it was seen that the robot could successfully map.

Figure 5. The sketch of the labyrinth where the robot was

tested.

The video of this experiment is given on the link which can be
found under Appendix A. As can be seen from the video, the
operator who has not seen the robot has been able to perform
the robot's journey successfully using only the touch senses
given from the interface.

4.3 Experimental Results

When the resolution of the image taken from the camera on the
robot and the Frame Per Second (FPS) values are changed, the
loads occurring at the processing power and network traffic are
observed as shown in Table 2. Since the map data is also
transferred as an image, the load on the system is similar to the
transfer of the webcam image.

Table 2. Web camera test chart.

Resolution FPS
Processor
Load (%)

Network
Traffic (Kbps)

240 x 320 30 8.75 110
240 x 320 15 3.5 45
480 x 640 30 15 180
480 x 640 15 12.5 150

960 x 1280 30 27.5 330

5 Conclusion

The aim of this work is to provide a two-way communication
between a mobile robot running on the ROS operating system
and a mobile device running on the Android operating system.

As a result of the experiments, it is observed that the mobile
robot can transmit data to the Android device via the ROS, and
depending on the size of the transmitted data, the capacity of
the microcontroller is observed and it is decided at which
resolution and level the data should be sent for optimum load
distribution.

The implementation of an application of ROS Android platform,
which is still in development by the developers, and the
successful completion of the problems will be a preliminary
evaluation for those who want to work in this area and will
make the development process very easy.

Moreover, the fact that mobile robot control can be carried out
so easily via an Android device, which can now be found in
every home, will save the need for additional control for robots
to drive and save researchers who want to work in this way.

6 Acknowledgment

This paper was presented at the “Akıllı Sistemlerde Yenilikler
ve Uygulamaları - ASYU2016” conference as a full text paper.

We are grateful to the Probabilistic Robotics Group of the
Department of Computer Engineering at Yıldız Technical
University for providing us with all kinds of material and
spiritual support for our work.

7 References
[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “Ros: an open-source robot
operating system,” in ICRA workshop on open source
software, vol. 3, no. 3.2, 2009, p. 5.

[2] A. Censi, "An ICP variant using a point-to-line metric,"
Robotics and Automation, 2008. ICRA 2008. IEEE Int. Conf.
on., pp.19,25, 19-23 May 2008.

[3] G. Grisetti; C. Stachniss.; W. Burgard, "Improved
Techniques for Grid Mapping With Rao-Blackwellized
Particle Filters," Robotics, IEEE Transactions on , 23(1):34-
46, 2007.

[4] “turtlebot_teleop - ROS Wiki”. [7.6.16].
http://wiki.ros.org/turtlebot_teleop.

[5] Dagu Wild Thumper 6WD All-Terrain Chassis, Silver, 75:1,
[3.5.16] https://www.pololu.com/product/1561.

[6] A. Doucet, J. de Freitas, K. Murphy, and S. Russel, “Rao-
Blackwellized particle filtering for dynamic Bayesian
networks,” in Proc. Conf. Uncertainty Artif. Intell., Stanford,
CA, 2000, pp. 176–183.

Appendix A

The experiment’s video link: https://youtu.be/rXAVSb0B5KE

https://youtu.be/rXAVSb0B5KE

