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ABSTRACT

We present a new variant of vehicle routing probleith a min-max objective
function. The problem has different types of serdemands satisfied by a heterogeneous
fleet of vehicles. Unlimited service capacitatedisleb serve the demand points with
multiple time windows and requirement of operatynchronization when demand is split
between vehicles. A mixed integer linear prograngnhiased heuristic solution approach is
proposed and a numerical study is carried out teess the performance of the proposed
method.

Oz
Bu galgmada min-max amag¢ fonksiyonlu yeni bisic@arag rotalama problemi
sunulmaktadir. Problemde farkli tipte aracglardarugln bir filo ile farkl tirde hizmet
talepleri kagilanmaktadir. Hizmet kapasitesi sinirsiz olan aaaglbirden fazla zaman
pencereli ve talebin araclar arasinda bdlinerek gdanmasi halinde operasyon
senkronizasyonu gerektiren talep noktalarina hizseglamaktadir. Problemin ¢6ézimi

icin tamsayili dgrusal programlama tabanl bir sezgisel algoritmakigimi 6nerilmj ve
Onerilen metodun persformansinggdendirmek igin sayisal bir ¢calma yapilmgtir.

Keywords: Vehicle Routing Problem; Heuristic Method; Synchzation.
Anahtar Kelimeler: Ara¢ Rotalama Problemi; Sezgisel Yontemler; Serikesyon.

1. INTRODUCTION

Since the first introduction of Vehicle Routing Brem (VRP) by
Dantzig and Ramser [1], a huge literature is cckate VRP and its several
extensions. Like different constraint environmerabjective environment
also may have different focuses like minimizatiohtilke maximum or
average arrival time. Those objective functionsfien seen in the nonprofit
environments like military operations, disasteriefeland humanitarian
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logistics (Duran et al. [2], Yakici and Karasakg]l, [Renkli and Duran [4]).

Naval operations like logistic support of warfareets, mine sweeping or
hunting operations is the basic motivation of tl@search. Type of logistic
support or operation, platform eligibility and otheharacteristics like

operation speed (or economic speed), desired suppaperation periods
comprise several restrictions on the problem.

In the research problem presented in this workietle a fleet that
consists of vehicles having varying operationalatelgies. Some vehicles
are capable of conducting one of the service typbge others can operate
in multiple types of service. Similarly, vehicleave different operation and
transfer speeds. It is assumed that, service desnzardbe satisfied by one
or more vehicles, demand points have multiple twiadows denoting
allowed periods for vehicles to arrive and all bé tservice demanded by
each demand location should be satisfied by vekighécles arriving at the
same time window. To the best of our knowledgéhaigh there are very
close problems, our problem is never introducedteei the literature.

A closely related problem is introduced in the waoikYakici and
Karasakal [3] where various type of customer demam@ satisfied by a
heterogeneous fleet and split delivery is alloweawever, there are
important differences between this problem andresearch problem. In the
problem presented in Yakici and Karasakal [3], deenand points are
grouped in regions and the vehicles are not allowwecthange their regions
once they are assigned, while there is no suchiatgsh in our problem.
The other difference which makes our problem moemegalized and
complicated is the existence of realistic operatiolimitations, namely
multiple time windows and operation synchronizatiomhich are not
handled in Yakici and Karasakal [3].

Temporal constraints are encountered in rich VRBblpms
frequently. However, so far, the interdependencyaedficles attracted less
attention. The interdependency between the vehidles operation
synchronization is tedious to handle, especiallydeveloping heuristic
approaches. Several authors try to overcome thesee iby allowing
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infeasible solutions, evaluating the cost approxétyaand using indirect
search (Drexl [5]).

The closest solution technique to the one we adgmiesented in the
research article of Bredstrom and Ronnqvist [6ymtroduce a combined
VRP and scheduling problem with time windows anageral constraints
and propose an optimization based heuristic toesmal instances. In order
to have a small branch and bound tree they resitrécproblem significantly
in number of variables and constraints, then thgytd improve the best
known feasible solution.

The heuristic approach we propose is based ord#eeaf sequential
insertion of vertices and route construction byrreted model solved with a
standard ILP solver.

In the following sections, the problem is introddcevith its
mathematical formulation, the proposed heuristigrapach is described and
the results of numerical experiments are reporkdally, conclusion is
given in the last section.

2. PROBLEM DEFINITION

In this section, we present the notation and thinitien of our
problem. The total of transfer and service timeaofehicle leaving central
vertex and visiting a given sequence of demandtpagnreferred as “travel
time”. Note that since the operation is considetedfinish with the
satisfaction of all service demands, time elapsedeturning to central
vertex is not included in the travel time. Therefadistance from any vertex
to central vertex is considered to be zero.

The following sets and parameters are used: (1,...,|K]): set of
uncapacitated vehicle$s = (V,E): complete directed graph with set of
verticesV = (1,...n) and set of arck consisting of arcs,() wherei andj €
V. P = (pj): distance matrix between all pairs of verticesvinS = (s):
vector of transfer speeds of vehicles Kn Q = (q): vector of service
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requirements demanded by vertice¥iD = (1,...,P|): set of service types.
R = (rkg): matrix of service rates (delivered service intume) of the
vehicles inK for type of demands iD. K4: set of uncapacitated vehicles
which can servel type of serviceVy: set of vertices which demanlbtype
of service.Wi: set of time windows for vertek u, : Latest time of time
window w for any vehicle to arrive at vertaxl, : Earliest time of time
window w for any vehicle to arrive at vertexM: a big numberz: a small
number.

In order to formulate the problem as an Mixed letegrogram
(MIP), let R andB denote the set of real numbers and {0, 1}, respelgt
The decision variables are described as follaws; € B takes value 1 if
edge {j) belongs to thek™ route; 0 otherwisey,;; €R denotes the
maximum travel timeT,, € R denotes the service time of vehicle k at vertex
i. 4,; € R denotes the arrival time of vehicle k at verteswv,,,. € B takes
value 1 if vehicle k arrives at vertéxat time windoww. twn,,, € B takes
value 1 if vertexi is visited at time windowv. Only one time window is
allowed for each vertex in the context of operaggnchronizationi,; € R
is a dummy variable used for subtour elimination.

min y 1)
A+ T <y vk EK (2)
z,{EKd’“;—:me =1 vde D,VieV, (3)
Diey X = 1 vk EK (4)
e Xuij = Diev Tuji vkeEKYEV (5)

L — L+ (M+ Dx = M
vk € K,vi €V (0),vj € V\ (0) (6)
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i .
EEEV:‘_ka =Ty vd € D,Vk € K;,Vj€EV, (7)

i

Ay & [1 - EEEV xk}'E)M + U Wi, T (1 - mkiij
Yk eK,VieV\ (0),¥vi €V \(0),vwE W, (8)

Ay = [Zivakji - 1)‘” + L tWipe + (twWyy, — 1)M
vk EKVieV\(0),VEV\(0)VwEW,  (9)

Ay = A+ + (2 —1)M + T,

vd ED,VkEK, ViEV,ViEV (10)
Dvew: Wine = 2o X vk e K.VieV (0) (11)
twn,, M =X, . twy, vie v\ (0),vyw e W, (12)
Yoew, twn, <1 vie v\ (0) (13)

The objective function (1) minimizes the maximunavel time.
Constraint (2) enforces the objective function eata be equal or greater
than the largest travel time. Constraint set (33uees that all of the
demands are satisfied. Constraints (4-6) ensuteettedn vehicle is assigned
to at most only one route and each route startseand at central vertex
without multiple visits to vertices. Constraint (¢pnnects the decision
variables related to routing and servicing by eimguthat the vehicles
should visit the vertices where they serve. Comagg8) and (9) enforce
the arrivals to occur within time windows. Constta{10) enforce each
arrival satisfies the elapsed time by previousdta€onstraint (11) connects
the decision variables related to routing and tiwedows. Constraint (12)
and (13) serve to ensure the operation synchroorzdty enforcing each
vertex can be visited by the vehicles in only ohigsotime windows.
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Note that still we can reduce the size of feas#gace by demand
type cuts (14) which prevents the vehicles fronitimg the demand points
that they cannot serve.

Eken:ff\xd},ievxkz'}' =0 Wd e D,Vj eV, (14)
3. HEURISTIC SOLUTION APPROACH

The heuristic approach is based on the idea aficesh of the MIP model.
Instead of solving the problem as a whole, we stiteegproblem in steps. At
each step, a group of vertices are added to theehumdil all of the vertices
are covered. The restricted problem is given aoegeriod of time for each
step. The traversed arcs of the best solution fasiedrried to the next step.
Each vehicle can break at most a limited numbercs from its own route
where some (or all) of the carried arcs are alloteelde broken in order to
visit the vertices added. Another restriction iplggal once in a while after a
certain number of steps are taken in between. réiisiction fixes all of the
previously traversed arcs and service that areadyreprocessed in the
visited vertices. Therefore, the problem restagaira with the remaining
vertices. We call these steps “fixing steps”. Aftefixing step, a vehicle
starts from the vertex it visits just before retogito the central vertex and
from the time it finishes its service in that lassited vertex. In order to
apply the restrictions, the following constrainte added to the model.

Xiet; = Frij — € vk EKVi,jEV (15)
T jev ey = 1 vk EK (16)
€rij = iy Yk E K, Wi,jeEV (17)
Ay = Ay vt vk €K (18)

The binary parameterf;, aq and nonnegative parametég jevel
respectively denote whether the arc is traversetieaprevious step (= 1),
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whether it is allowed to be broken (= 1) at therent step and the time
when vehicle k completes its job just before rangrto central vertex in
the last fixing step. The binary decision variablgtakes positive value if
the arc (i,)) is broken by vehicle The last constraint (18) forces vehi&le
to start at the time given A eve after last fixing step. Note that, distance
parameter in the model has to take an additiomxnndicating the vehicle
it belongs to, and distances from new startingieestof vehicles to all of
the vertices not covered yely;, have to be recalculated at fixing steps.

We define two criteria to choose vertices to bedeald Given the
worst scenario, the vehicles do not break any act @ntinue from the
latest visited vertex just before returning to teatral vertex, one of them is
the minimum required time to begin to serve nevdgied vertexming(i,k),
and the other is the maximum time that can be spefdre making an
attempt (leave the current vertex) to visit newtidded vertexmaxdi,k),
whereigV, keK; andK; is the set of eligible vehicle set for vertexrhese
values are affected by both of the time windowshef vertex to be added
and the time required by vehicle to reach to tleaitex. For a vertex to take
priority in addition to the model, it is better bave less value from both of
these criteria. Note that each of the criteria bardefined for each of the
combinations made by a vertex and a vehicle thateligible to visit that
vertex. Therefore, while considering all of thosambinations, it is also
useful to consider the combinations that give thkéreene values: the
minimum value coming from the first criterion anldetmaximum value
coming from the second one, namelynin, ., minRT(i,k) and
max, ., maxT5(i,k). We define a simple function that determines the
relative priorities of the vertices to be addedte model. There are four
components in the functioniK;): the summation of values for all eligible
vehicles (for first and second criteria) and théreaxe values which are
defined in the previous paragraph (for first andosel criteria). Those four
values for each vertex are separately scaled batWeand 1. Therefore,
each vertex has four values between 0 and 1. Timenstion of those four
values, equally or differently weighted, defines friority of vertex.
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In the selection of the arcs that are allowedadtoken, the number
of consecutive steps that an arc remain in thetisokilis taken as the basic
parameter. If this parameter is set to “0”, al/&esed arcs are allowed to be
broken in the next step. As the parameter increabesnumber of arcs
allowed to be broken decreases. In all cases,askedrc of all vehicles
which is returning to central vertex is kept brdaka We accept that it is
hard to give a specific comment on the best contioindor the remaining
parameters which are the number of added verticeach step, the number
of steps between fixing steps and the time allofeedolving the restricted
problem. These parameters can be determined wsffece to the problem
size and the time given to have a feasible solution

Since we solve the problem in a stepwise manndremtablish a
priority value for the vertices for being addedite model, it is possible to
have infeasibility in subproblems because of tiniedew restrictions of the
vertices. In order to handle this case, we add Ipemamponent to the
objective function. In order the penalty mechantsmvork, a new decision
variable is introduced into the model. The objetfunction (1) and the
constraint (3) is changed as indicated in the esgioas (19) and (20).

min(y + EEE':V'\D} penalty, M) (19)
Tk, ’;— T,; = 1 — penalty, vd e D,VieV, (20)
]

The new binary decision variablgenalty takes positive value if
adding vertex is infeasible or it takes much time than allowedfihd a
solution including that vertex at the current stéghere is a penalty, the
algorithm turns back to the last fixing step toaeghe solution to have it
become feasible. In repairing, fixed solution ikased in order to have the
penalized vertices be introduced to the model, e/ladrtraversed arcs are
kept fixed but allowing that limited number of arftem each route can be
broken just as it is applied in constructing stefise formalalgorithm of
construction heuristic is given below. Since repairing procedure is
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straightforward, we do not denote repairing steppagtely in the
algorithm.

 Step 1. Set heuristic parameters and construntioatel (objective function
19 subject to constraints 2, 4-13, 15-18, 20),date vertex priority values
and create an ordered list of vertices L w.r.t.itlatto-model priority. Go
to Step 2.

« Step 2. IfL is not empty, add firgtse, vertices (or add all vertices if there
are less thamsep from L to model and updatk, excluding the vertices
added to model, go to Step 3. Otherwise stop.

« Step 3. Solve model in given time period,

— Step 3.1. If this is not a fixing step and alftiees are served
without penalty, set the valugf;; to 1 for all traversed arcsjj € E
andk €K wherex,;; is equal to 1. Se4,;; to 1 w.r.t. given setting
in order to determine the arcs that can be brofgeno Step 2.

— Step 3.2. If this is a fixing step and all veaScare served without
penalty, go to Step 4.

— Step 3.3. If all vertices cannot be served, toack to the last
fixing step and apply repair procedure. If solut@amnot be repaired
go to previous fixing steps to apply repair progeduntil the
penalized vertices are added to the model. Uddage to Step 2.

» Step 4. Exclude all added vertices from modet. &bexcluded vertices;
keep the traversed arcs, served time windows andngeduration in the
vertices. Update the distances from central vetdeather vertices: For all
vehicleske K, setp,,; t0 p,.; wherec indicates the last visited vertex kof

Set the current vertices to “0”, ardl, ,.,.; to 4.+ T, for all vehicles

k £K. Go to Step 2.
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The solution constructed as it is explained abuag have still room
to be improved. One way is improvement within eemlite and the other is
combining more than one routes to have an oppaytamiimprove. Before
combining the routes, we choose to check if therani improvement room
within each route applying a simplified version die model with
considered vehicle and vertices it has served. ,Wlwerexpand this check by
adding two routes, one from the set of longestea®aind one from the set of
shortest routes, to the model. In both improvenphases, the traversed arcs
are all allowed to be broken, which means the esaiuof the constraints
(15-17) from the model. Also allowed time windowedch vertex that are
served by other vehicles (the vehicles belong t® ributes that are not
considered at the current improvement step) aedfiy adding constraint
(21) into the improvement model.

twn, . = twn,

iw lewvel

. vi eV \ (0),vYw e W, (21)

The binary parametéwn,, evel IS Set to positive value, if the vertex
Is served in time window by any other vehicle that is not considered at the
current improvement step. While choosing the lohgesl shortest route,
the combination, giving the greatest number ofigestin longest route that
can be served by the vehicle of shortest routgjvien priority. While the
set of longest routes consist of only the routes lave the maximum time
length, the set of shortest routes are populatadirgy from the route(s)
having shortest time length and adding one by anit the set satisfies that
the vehicles included are eligible to serve alltices served by the set of
longest routes. To complete the improvement phadenasreasonable time
period, each improvement iteration is given a derfgeriod of time and
after allowing a certain number of steps (or timefen there is a
deterioration or no-improvement in the objectivadtion, the algorithm is
stopped. The steps of the procedure applied fornipeovement phase of
the heuristic approach is given below.

» Step 1. Set improvement model (objective funcficgubject to constraints

2-13, 21). Solve separately in given time periools dach vehiclk K.
Update the solution. Go to Step 2.
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 Step 2. Update the set of longest rotResnd set of shortest routBssuch
that R covers allr; longest routes having equal values, &dovers the
shortestrs routes of which vehicles can serve all of theigest covered in
R. Go to Step 3.

» Step 3. If the stopping criterion does not haldlve improvement model
with the combination of one route each fr&randRs, such that the number
of vertices in the longest route that can be sebyethe vehicle of the short
route be maximized (if there is a tie, choose thmlgination with shorter

route, if the tie is not broken, break randomlypddte the solution, and go
to Step 2. Otherwise stop.

4. EXPERIMENTS

Since there is no test instances that can serberahmark either as
a lower bound or optimal solution to our problemg whoose our test
problems from the test problems given in Yakicl &adasakal [3]. We also
applied the same vehicle parameters as they arkedpp Yakici and
Karasakal [3]. While keeping all of the data oft geoblems given in Yakici
and Karasakal [3] as they are, since it is requiredur problem, we add
parameters for two time windows for each vertexre€hdifferent time
window pairs, (0-15, 20-35; 5-20, 25-40; 10-25,4%); are determined and
one of these pairs is assigned to each one ofcesréxcept central vertex.
In time window assignment to vertices, we followe tlorder of given
numbers to vertices and the order of time windowergin the previous
sentence.

Performance of the proposed method is comparexkdot solution
method provided by CPLEX 12.6.2.0 ILP solver. ldliéidn, since even the
small instances cannot be solved by exact metimodrder to have another
benchmark, we relaxed the time windows such treafitkt time window of
each node has no upper bound. The lower boundsbast solutions
achieved in twelve hours are reported along with hieuristic methods
performance. In application of heuristic methodratst two minutes (and
10% relative gap criterion, if it is reached eajlis given for solving the
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restricted MIP at each step and maximum ten minugeggiven in
improvement phase. Except 31-node instance, alanoss used up ten-
minute improvement period. Improvement phase iy @applied after the
completion of construction and stepwise approaaiotsused in this phase.
In the construction phase, five nodes are addetiéanodel at each step
using equal weight priority function values andeach step only one arc
from each route is allowed to be broken. When todras, but only older
arcs (the arcs which is traversed in the same @mrsequently at more than
one in the last steps) are defined as breakabéeja$t arc returning to
central vertex is always allowed to be broken.

Experiments are conducted with a personal compuitér 2.6 GHz

CPU and 8 GB RAM. The result of the experimenteejgorted in Table 1,
where instance identity (ID) is given in the ficstlumn. In instance ID, the
first section before the letter “k” denotes the f@®blem group and number
of vertices as denoted in Yakicl and Karasakal V&hicle quantities from
each type are indicated after the letter “k”. Nfxir columns are related to
the solutions of MIP and relaxed MIP. MIP refersthe model defined by
objective and constraints (1-13), while Relaxed M#?ers to the same
model where only first time windows are appliedhsitit upper bound. For
MIP and Relaxed MIP, the lower bound and the incamtsolution from
exact solution method is reported after twelve-hmeniod is elapsed. In the
columns under the “Heuristic” title, solution fdwet problem with original
time windows (not relaxed), time elapsed in the stattion phase of
solution process (in minutes and seconds) and peareettings are given.
In the “Settings” column, first field (before slgstienotes the number of
steps that an arc should remain in the solutiobetdreakable and second
field denotes the required number of vertices taered to apply fixing
steps. As presented in this column, we start fixwigen the step with 15
vertices is solved. Then, at every increment ofnd@re vertices in the
problem, fixing step is applied.
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Table 1. Experiment Results

MIP Relaxed MIP Heuristic
Instance ID LB Sol'n |LB Sol'n |[Sol'n |Time Setting
E031-k1/1/2/4 2.33 - 6.49| 31.53| 35.28 7'23" | 0/15-25
E031-k1/1/2/4 2.33 - 6.49| 31.53| 36.53 6'57" | 1/15-25
P-n51-k1/1/2/4 2.29 - 16.99 - 54.28 | 10'30" | 0/15-25-...-45
P-n51-k1/1/2/4 2.29 - 16.99 - 58.10 | 10'22"|1/15-25-...-45
E-n76-k1/1/2/4 2.18 - 13.74 - 89.05| 15'04"|0/15-25-...-65
E-n76-k1/1/2/4 2.18 - 13.74 - 91.04 | 14'15"|1/15-25-...-65

Observing Table 1 yields that we have rather poeer bounds and
no solutions at all from commercial solver. Whea ginoblem is relaxed and
solved by the same solver, we can find better Idveemds which serves as
lower bounds to the original problem (MIP). Sinde tsolver does not
perform well in finding solutions, we believe thdeeer bounds are still far
away from optimal solutions. Therefore, while wenmat determine the
quality of heuristic solution, we can claim thaé theuristic is useful in this
case when there is no other algorithm that canbtter solutions.

5. CONCLUSION

We introduce a rich VRP in which there is a hejer®ous fleet
having varying operational capabilities and it issamed that, service
demand of a demand point can be satisfied by omeooe vehicles in one
of assigned multiple time windows.

An ILP formulation of the problem is given and HP based
heuristic is developed for solving the problem. Wave employed and
tailored three small test problems from an eadiedy [3] about a similar
problem having no time window and synchronizatiestrictions. Even with
these small instances, the commercial solver cafinot any feasible
solution in twelve hours while heuristic solutianable to find solutions in
less than half of an hour for the largest instakdso lower bounds found
by the exact method solver in twelve hours are yeayr. Therefore, we do
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not have an idea about the solution quality, howewe consider that the
proposed method is useful in the absence of arlszibetion.
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