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ABSTRACT  

We present a new variant of vehicle routing problem with a min-max objective 
function. The problem has different types of service demands satisfied by a heterogeneous 
fleet of vehicles. Unlimited service capacitated vehicles serve the demand points with 
multiple time windows and requirement of operation synchronization when demand is split 
between vehicles. A mixed integer linear programming based heuristic solution approach is 
proposed and a numerical study is carried out to assess the performance of the proposed 
method. 

ÖZ 

Bu çalışmada min-max amaç fonksiyonlu yeni bir çeşit araç rotalama problemi 
sunulmaktadır. Problemde farklı tipte araçlardan oluşan bir filo ile farklı türde hizmet 
talepleri karşılanmaktadır. Hizmet kapasitesi sınırsız olan araçlar, birden fazla zaman 
pencereli ve talebin araçlar arasında bölünerek karşılanması halinde operasyon 
senkronizasyonu gerektiren talep noktalarına hizmet sağlamaktadır. Problemin çözümü 
için tamsayılı doğrusal programlama tabanlı bir sezgisel algoritma yaklaşımı önerilmiş ve 
önerilen metodun persformansını değerlendirmek için sayısal bir çalışma yapılmıştır.   

Keywords: Vehicle Routing Problem; Heuristic Method; Synchronization. 
Anahtar Kelimeler: Araç Rotalama Problemi; Sezgisel Yöntemler; Senkronizasyon. 
 

1. INTRODUCTION 
 

Since the first introduction of Vehicle Routing Problem (VRP) by 
Dantzig and Ramser [1], a huge literature is created on VRP and its several 
extensions. Like different constraint environments, objective environment 
also may have different focuses like minimization of the maximum or 
average arrival time. Those objective functions is often seen in the nonprofit 
environments like military operations, disaster relief and humanitarian 
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logistics (Duran et al. [2], Yakıcı and Karasakal [3], Renkli and Duran [4]). 
Naval operations like logistic support of warfare fleets, mine sweeping or 
hunting operations is the basic motivation of this research. Type of logistic 
support or operation, platform eligibility and other characteristics like 
operation speed (or economic speed), desired support or operation periods 
comprise several restrictions on the problem. 

  
In the research problem presented in this work, there is a fleet that 

consists of vehicles having varying operational capabilities. Some vehicles 
are capable of conducting one of the service types, while others can operate 
in multiple types of service. Similarly, vehicles have different operation and 
transfer speeds. It is assumed that, service demands can be satisfied by one 
or more vehicles, demand points have multiple time windows denoting 
allowed periods for vehicles to arrive and all of the service demanded by 
each demand location should be satisfied by vehicle/vehicles arriving at the 
same time window. To the best of our knowledge, although there are very 
close problems, our problem is never introduced before in the literature.  
 

A closely related problem is introduced in the work of Yakıcı and 
Karasakal [3] where various type of customer demands are satisfied by a 
heterogeneous fleet and split delivery is allowed. However, there are 
important differences between this problem and our research problem. In the 
problem presented in Yakıcı and Karasakal [3], the demand points are 
grouped in regions and the vehicles are not allowed to change their regions 
once they are assigned, while there is no such restriction in our problem. 
The other difference which makes our problem more generalized and 
complicated is the existence of realistic operational limitations, namely 
multiple time windows and operation synchronization, which are not 
handled in Yakıcı and Karasakal [3].  
 

Temporal constraints are encountered in rich VRP problems 
frequently. However, so far, the interdependency of vehicles attracted less 
attention. The interdependency between the vehicles in operation 
synchronization is tedious to handle, especially in developing heuristic 
approaches. Several authors try to overcome these issue by allowing 
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infeasible solutions, evaluating the cost approximately and using indirect 
search (Drexl [5]).  
 

The closest solution technique to the one we adopt is presented in the 
research article of Bredström and Rönnqvist [6]. They introduce a combined 
VRP and scheduling problem with time windows and temporal constraints 
and propose an optimization based heuristic to solve real instances. In order 
to have a small branch and bound tree they restrict the problem significantly 
in number of variables and constraints, then they try to improve the best 
known feasible solution.  
 

The heuristic approach we propose is based on the idea of sequential 
insertion of vertices and route construction by restricted model solved with a 
standard ILP solver.  
 

In the following sections, the problem is introduced with its 
mathematical formulation, the proposed heuristic approach is described and 
the results of numerical experiments are reported. Finally, conclusion is 
given in the last section. 
 

2. PROBLEM DEFINITION 
 

In this section, we present the notation and the definition of our 
problem. The total of transfer and service time of a vehicle leaving central 
vertex and visiting a given sequence of demand points is referred as “travel 
time”. Note that since the operation is considered to finish with the 
satisfaction of all service demands, time elapsed in returning to central 
vertex is not included in the travel time. Therefore, distance from any vertex 
to central vertex is considered to be zero.  

 
The following sets and parameters are used: K = (1,...,|K|): set of 

uncapacitated vehicles. G = (V,E): complete directed graph with set of 
vertices V = (1,...,n) and set of arcs E consisting of arcs (i,j) where i and j  
V. P = (pij): distance matrix between all pairs of vertices in V. S = (sk): 
vector of transfer speeds of vehicles in K. Q = (qi): vector of service 
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requirements demanded by vertices in V. D = (1,...,|D|): set of service types. 
R = (rkd): matrix of service rates (delivered service in unit time) of the 
vehicles in K for type of demands in D. Kd: set of uncapacitated vehicles 
which can serve d type of service. Vd: set of vertices which demand d type 
of service. Wi: set of time windows for vertex i. uiw : Latest time of time 
window w for any vehicle to arrive at vertex i. l iw : Earliest time of time 
window w for any vehicle to arrive at vertex i. M: a big number. : a small 
number.  

 
In order to formulate the problem as an Mixed Integer Program 

(MIP), let  and  denote the set of real numbers and {0, 1}, respectively. 
The decision variables are described as follows:   takes value 1 if 
edge (i,j) belongs to the kth route; 0 otherwise.   denotes the 
maximum travel time.   denotes the service time of vehicle k at vertex 
i.   denotes the arrival time of vehicle k at vertex i.   takes 
value 1 if vehicle k arrives at vertex i at time window w.   takes 
value 1 if vertex i is visited at time window w. Only one time window is 
allowed for each vertex in the context of operation synchronization.   
is a dummy variable used for subtour elimination. 

 
          (1) 

 
        (2) 

 
      (3) 

 
         (4) 

 
      (5) 

 
      

      (6) 
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     (7) 

 
  

    (8) 
 

  
    (9) 
 

 

,            (10) 
 

             (11) 
 

            (12) 
 

               (13) 
 

The objective function (1) minimizes the maximum travel time. 
Constraint (2) enforces the objective function value to be equal or greater 
than the largest travel time. Constraint set (3) ensures that all of the 
demands are satisfied. Constraints (4-6) ensure that each vehicle is assigned 
to at most only one route and each route starts and ends at central vertex 
without multiple visits to vertices. Constraint (7) connects the decision 
variables related to routing and servicing by ensuring that the vehicles 
should visit the vertices where they serve. Constraints (8) and (9) enforce 
the arrivals to occur within time windows. Constraint (10) enforce each 
arrival satisfies the elapsed time by previous travel. Constraint (11) connects 
the decision variables related to routing and time windows. Constraint (12) 
and (13) serve to ensure the operation synchronization by enforcing each 
vertex can be visited by the vehicles in only one of its time windows.  
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Note that still we can reduce the size of feasible space by demand 
type cuts (14) which prevents the vehicles from visiting the demand points 
that they cannot serve. 
 

            (14) 
 

3. HEURISTIC SOLUTION APPROACH 
 
The heuristic approach is based on the idea of restriction of the MIP model. 
Instead of solving the problem as a whole, we solve the problem in steps. At 
each step, a group of vertices are added to the model until all of the vertices 
are covered. The restricted problem is given a certain period of time for each 
step. The traversed arcs of the best solution found is carried to the next step. 
Each vehicle can break at most a limited number of arcs from its own route 
where some (or all) of the carried arcs are allowed to be broken in order to 
visit the vertices added. Another restriction is applied once in a while after a 
certain number of steps are taken in between. This restriction fixes all of the 
previously traversed arcs and service that are already processed in the 
visited vertices. Therefore, the problem restarts again with the remaining 
vertices. We call these steps “fixing steps”. After a fixing step, a vehicle 
starts from the vertex it visits just before returning to the central vertex and 
from the time it finishes its service in that last visited vertex. In order to 
apply the restrictions, the following constraints are added to the model. 
 

                 (15) 
 

                 (16) 
 

               (17) 
 

                (18) 
 
 The binary parameters fkij, akij and nonnegative parameter Ak level 
respectively denote whether the arc is traversed at the previous step (= 1), 
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whether it is allowed to be broken (= 1) at the current step and the time 
when vehicle k completes its job just before returning to central vertex in 
the last fixing step. The binary decision variable ekij takes positive value if 
the arc (i,j) is broken by vehicle k. The last constraint (18) forces vehicle k 
to start at the time given by Ak level after last fixing step. Note that, distance 
parameter in the model has to take an additional index indicating the vehicle 
it belongs to, and distances from new starting vertices of vehicles to all of 
the vertices not covered yet, pk0j, have to be recalculated at fixing steps.  
  
 We define two criteria to choose vertices to be added. Given the 
worst scenario, the vehicles do not break any arc and continue from the 
latest visited vertex just before returning to the central vertex, one of them is 
the minimum required time to begin to serve newly added vertex, minRT(i,k), 
and the other is the maximum time that can be spent before making an 
attempt (leave the current vertex) to visit newly added vertex, maxTS(i,k), 
where i V, k Ki and Ki is the set of eligible vehicle set for vertex i. These 
values are affected by both of the time windows of the vertex to be added 
and the time required by vehicle to reach to that vertex. For a vertex to take 
priority in addition to the model, it is better to have less value from both of 
these criteria. Note that each of the criteria can be defined for each of the 
combinations made by a vertex and a vehicle that are eligible to visit that 
vertex. Therefore, while considering all of those combinations, it is also 
useful to consider the combinations that give the extreme values: the 
minimum value coming from the first criterion and the maximum value 
coming from the second one, namely,  and 

. We define a simple function that determines the 
relative priorities of the vertices to be added to the model. There are four 
components in the function f(i,Ki): the summation of values for all eligible 
vehicles (for first and second criteria) and the extreme values which are 
defined in the previous paragraph (for first and second criteria). Those four 
values for each vertex are separately scaled between 0 and 1. Therefore, 
each vertex has four values between 0 and 1. The summation of those four 
values, equally or differently weighted, defines the priority of vertex. 
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 In the selection of the arcs that are allowed to be broken, the number 
of consecutive steps that an arc remain in the solutions is taken as the basic 
parameter. If this parameter is set to “0”, all traversed arcs are allowed to be 
broken in the next step. As the parameter increases, the number of arcs 
allowed to be broken decreases. In all cases, the last arc of all vehicles 
which is returning to central vertex is kept breakable. We accept that it is 
hard to give a specific comment on the best combination for the remaining 
parameters which are the number of added vertices at each step, the number 
of steps between fixing steps and the time allowed for solving the restricted 
problem. These parameters can be determined with respect to the problem 
size and the time given to have a feasible solution.  
 
 Since we solve the problem in a stepwise manner and establish a 
priority value for the vertices for being added to the model, it is possible to 
have infeasibility in subproblems because of time window restrictions of the 
vertices. In order to handle this case, we add penalty component to the 
objective function. In order the penalty mechanism to work, a new decision 
variable is introduced into the model. The objective function (1) and the 
constraint (3) is changed as indicated in the expressions (19) and (20). 
 

              (19) 
 

            (20) 

 
The new binary decision variable penaltyi takes positive value if 

adding vertex i is infeasible or it takes much time than allowed to find a 
solution including that vertex at the current step. If there is a penalty, the 
algorithm turns back to the last fixing step to repair the solution to have it 
become feasible. In repairing, fixed solution is released in order to have the 
penalized vertices be introduced to the model, where all traversed arcs are 
kept fixed but allowing that limited number of arcs from each route can be 
broken just as it is applied in constructing steps. The formal algorithm of 
construction heuristic is given below. Since repairing procedure is 
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straightforward, we do not denote repairing steps separately in the 
algorithm. 

 
• Step 1. Set heuristic parameters and construction model (objective function 
19 subject to constraints 2, 4-13, 15-18, 20), calculate vertex priority values 
and create an ordered list of vertices L w.r.t. addition-to-model priority. Go 
to Step 2. 
  
• Step 2. If L is not empty, add first nstep vertices (or add all vertices if there 
are less than nstep) from L to model and update L, excluding the vertices 
added to model, go to Step 3. Otherwise stop.  
 
• Step 3. Solve model in given time period,  
 

– Step 3.1. If this is not a fixing step and all vertices are served 
without penalty, set the values  to 1 for all traversed arcs (i,j)  E 
and k K where  is equal to 1. Set  to 1 w.r.t. given setting 
in order to determine the arcs that can be broken, go to Step 2.  
 
– Step 3.2. If this is a fixing step and all vertices are served without 
penalty, go to Step 4.  
 
– Step 3.3. If all vertices cannot be served, turn back to the last 
fixing step and apply repair procedure. If solution cannot be repaired 
go to previous fixing steps to apply repair procedure until the 
penalized vertices are added to the model. Update L, go to Step 2. 

 
• Step 4. Exclude all added vertices from model. For all excluded vertices; 
keep the traversed arcs, served time windows and serving duration in the 
vertices. Update the distances from central vertex to other vertices: For all 
vehicles k K, set  to  where c indicates the last visited vertex of k. 
Set the current vertices to “0”, and  to  for all vehicles 
k K. Go to Step 2. 
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 The solution constructed as it is explained above may have still room 
to be improved. One way is improvement within each route and the other is 
combining more than one routes to have an opportunity to improve. Before 
combining the routes, we choose to check if there is an improvement room 
within each route applying a simplified version of the model with 
considered vehicle and vertices it has served. Then, we expand this check by 
adding two routes, one from the set of longest routes and one from the set of 
shortest routes, to the model. In both improvement phases, the traversed arcs 
are all allowed to be broken, which means the exclusion of the constraints 
(15-17) from the model. Also allowed time window of each vertex that are 
served by other vehicles (the vehicles belong to the routes that are not 
considered at the current improvement step) are fixed by adding constraint 
(21) into the improvement model. 
 

             (21) 
 
 The binary parameter twniw level is set to positive value, if the vertex i 
is served in time window w by any other vehicle that is not considered at the 
current improvement step. While choosing the longest and shortest route, 
the combination, giving the greatest number of vertices in longest route that 
can be served by the vehicle of shortest route, is given priority. While the 
set of longest routes consist of only the routes that have the maximum time 
length, the set of shortest routes are populated starting from the route(s) 
having shortest time length and adding one by one until the set satisfies that 
the vehicles included are eligible to serve all vertices served by the set of 
longest routes. To complete the improvement phase within reasonable time 
period, each improvement iteration is given a certain period of time and 
after allowing a certain number of steps (or time), when there is a 
deterioration or no-improvement in the objective function, the algorithm is 
stopped. The steps of the procedure applied for the improvement phase of 
the heuristic approach is given below.  
 
• Step 1. Set improvement model (objective function 1 subject to constraints 
2-13, 21). Solve separately in given time periods for each vehicle k K. 
Update the solution. Go to Step 2.  
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• Step 2. Update the set of longest routes Rl and set of shortest routes Rs such 
that Rl covers all r l longest routes having equal values, and Rs covers the 
shortest rs routes of which vehicles can serve all of the vertices covered in 
Rl. Go to Step 3.  
 
• Step 3. If the stopping criterion does not hold, solve improvement model 
with the combination of one route each from Rl and Rs, such that the number 
of vertices in the longest route that can be served by the vehicle of the short 
route be maximized (if there is a tie, choose the combination with shorter 
route, if the tie is not broken, break randomly). Update the solution, and go 
to Step 2. Otherwise stop. 
 
 4. EXPERIMENTS 
 
 Since there is no test instances that can serve as benchmark either as 
a lower bound or optimal solution to our problem, we choose our test 
problems from the test problems given in Yakıcı and Karasakal [3]. We also 
applied the same vehicle parameters as they are applied in Yakıcı and 
Karasakal [3]. While keeping all of the data of test problems given in Yakıcı 
and Karasakal [3] as they are, since it is required in our problem, we add 
parameters for two time windows for each vertex. Three different time 
window pairs, (0-15, 20-35; 5-20, 25-40; 10-25, 30-45), are determined and 
one of these pairs is assigned to each one of vertices except central vertex. 
In time window assignment to vertices, we follow the order of given 
numbers to vertices and the order of time windows given in the previous 
sentence. 
 
 Performance of the proposed method is compared to exact solution 
method provided by CPLEX 12.6.2.0 ILP solver. In addition, since even the 
small instances cannot be solved by exact method, in order to have another 
benchmark, we relaxed the time windows such that the first time window of 
each node has no upper bound. The lower bounds and best solutions 
achieved in twelve hours are reported along with the heuristic methods 
performance. In application of heuristic method, at most two minutes (and 
10% relative gap criterion, if it is reached earlier) is given for solving the 



Ertan YAKICI 

 30 

restricted MIP at each step and maximum ten minutes is given in 
improvement phase. Except 31-node instance, all instances used up ten-
minute improvement period. Improvement phase is only applied after the 
completion of construction and stepwise approach is not used in this phase. 
In the construction phase, five nodes are added to the model at each step 
using equal weight priority function values and at each step only one arc 
from each route is allowed to be broken. When not all arcs, but only older 
arcs (the arcs which is traversed in the same route consequently at more than 
one in the last steps) are defined as breakable, the last arc returning to 
central vertex is always allowed to be broken.  
 

Experiments are conducted with a personal computer with 2.6 GHz 
CPU and 8 GB RAM. The result of the experiments is reported in Table 1, 
where instance identity (ID) is given in the first column. In instance ID, the 
first section before the letter “k” denotes the test problem group and number 
of vertices as denoted in Yakıcı and Karasakal [3]. Vehicle quantities from 
each type are indicated after the letter “k”. Next four columns are related to 
the solutions of MIP and relaxed MIP. MIP refers to the model defined by 
objective and constraints (1-13), while Relaxed MIP refers to the same 
model where only first time windows are applied without upper bound. For 
MIP and Relaxed MIP, the lower bound and the incumbent solution from 
exact solution method is reported after twelve-hour period is elapsed. In the 
columns under the “Heuristic” title, solution for the problem with original 
time windows (not relaxed), time elapsed in the construction phase of 
solution process (in minutes and seconds) and parameter settings are given. 
In the “Settings” column, first field (before slash) denotes the number of 
steps that an arc should remain in the solution to be breakable and second 
field denotes the required number of vertices to be covered to apply fixing 
steps. As presented in this column, we start fixing when the step with 15 
vertices is solved. Then, at every increment of 10 more vertices in the 
problem, fixing step is applied.  
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Table 1. Experiment Results 
MIP Relaxed MIP Heuristic 

 Instance ID LB Sol'n LB Sol'n Sol'n Time Setting 

E031-k1/1/2/4 2.33 - 6.49 31.53 35.28 7'23" 0/15-25 

E031-k1/1/2/4 2.33 - 6.49 31.53 36.53 6'57" 1/15-25 

P-n51-k1/1/2/4 2.29 - 16.99 - 54.28 10'30" 0/15-25-…-45 

P-n51-k1/1/2/4 2.29 - 16.99 - 58.10 10'22" 1/15-25-…-45 

E-n76-k1/1/2/4 2.18 - 13.74 - 89.05 15'04" 0/15-25-…-65 

E-n76-k1/1/2/4 2.18 - 13.74 - 91.04 14'15" 1/15-25-…-65 

 
 Observing Table 1 yields that we have rather poor lower bounds and 
no solutions at all from commercial solver. When the problem is relaxed and 
solved by the same solver, we can find better lower bounds which serves as 
lower bounds to the original problem (MIP). Since the solver does not 
perform well in finding solutions, we believe these lower bounds are still far 
away from optimal solutions. Therefore, while we cannot determine the 
quality of heuristic solution, we can claim that the heuristic is useful in this 
case when there is no other algorithm that can find better solutions.   
 
 5. CONCLUSION 
 
 We introduce a rich VRP in which there is a heterogeneous fleet 
having varying operational capabilities and it is assumed that, service 
demand of a demand point can be satisfied by one or more vehicles in one 
of assigned multiple time windows.  
 
 An ILP formulation of the problem is given and an ILP based 
heuristic is developed for solving the problem. We have employed and 
tailored three small test problems from an earlier study [3] about a similar 
problem having no time window and synchronization restrictions. Even with 
these small instances, the commercial solver cannot find any feasible 
solution in twelve hours while heuristic solution is able to find solutions in 
less than half of an hour for the largest instance. Also lower bounds found 
by the exact method solver in twelve hours are very poor. Therefore, we do 
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not have an idea about the solution quality, however we consider that the 
proposed method is useful in the absence of a better solution.  
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