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1. Introduction

In this paper we consider boundary value problem L for the equation

l(y) := −y′′ + q(x)y = λy, λ = k2 (1.1)

on the interval 0 < x < π, with the boundary conditions

U(y) := y′(0) = 0, V (y) := y(π) = 0 (1.2)

and with the jump conditions

y(d + 0) = ay(d− 0), y′(d + 0) = a−1y′(d− 0), (1.3)

where λ is the spectral parameter, q(x) is a real valued function with q(x) ∈ L2(0, π)
and a (a > 0, a 6= 1) is a real constant, d ∈

(π

2
, π

)
.

Inverse spectral analysis has been an important research topic in mathematical
physics. Inverse problems of spectral analysis involve the reconstruction of a linear
operator from its spectral characteristics e.g., see [2, 15, 24, 25, 30]. A problem of
this kind was first investigated by Ambarzumyan in 1929 [3]. Later, inverse problems
for a regular and singular Sturm Liouville operator appeared in various versions [3,
5, 6, 9, 14, 15, 17-19, 23, 26, 28, 31-35].

Assuming that heat flows only into the liquid which has an ununiform density
ρ(x) and is convected only from the liquid into the surrounding medium, the initial
boundary value problem for a bar of length one takes the form

ut = ρ(x)uxx (1*)
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ux(0, t) = 0 (2*)

−kAux(π, t) = QM(dv/dt) + k1Bv(t) for all t, (3*)

u(x, 0) = u0(x) for x ∈ [0, π], (4*)

v(0) = v0

after factoring out the steady-state solution, where

ρ(x) =
{

1, 0 < x < d,
α2, d < x < π.

Assuming that the rate of heat transfer across the liquid–solid interface is pro-
portional to the difference in temperature between the end of the bar and the liquid
with which it is in contact (Newton’s law of cooling) and applying Fourier’s law of
heat conduction at x = π, we get

v(t) = u(π, t) + kc−1ux(π−1, t) for t > 0, where c > 0 is the coefficient of heat
transfer for the liquid. If we put u(x, t) = y(x)exp(−λt), then problems (1.1)–(1.3)
will appear to be the consequence of the above problem. Indeed, condition (1.2) is
obtained from (2*), easily. Here

H =
c

k
, H1 =

cA + k1B

QM
and H2 =

k1Bc

QMk
.

Finally, if we put

t =
{

x, 0 < x < d,
αx, d < x < π,

then the discontinuity conditions (1.3) and a particular case of Equation (1.1) will
appear. This corresponds to the case of nonperfect thermal contact. Since the
density is changed at one point in the interval, both the intensity and the instant
velocity of heat change at this point. Hence, Equation (1.1)–(1.3) will appear to be
the consequence of the above problem.

Boundary value problems with discontinuity conditions inside the interval often
appear in applications. Such problems are connected with discontinuous material
properties. Inverse problems with a discontinuity condition inside the interval fre-
quently arise in mathematics, mechanics, radio electronics, geophysics, and other
fields of science and technology. For example, discontinuous inverse problems ap-
pear in electronics for constructing parameters of heterogeneous electronic lines with
desirable technical characteristics [27, 30]. As a rule, such problems are related to
discontinuous and nonsmooth properties of a medium (e.g., see [5, 17, 23]). Dis-
continuous inverse problems (in various formulations) have been considered in [14,
17, 23, 36] and other works. Generally, for recovering the potential function on the
whole interval it is necessary to specify two spectra of boundary value problems with
different boundary conditions (see [36]). The inverse problem for interior spectral
data of the differential operator consists in reconstruction of this operator from the
known eigenvalues and some information on eigenfunctions at some internal point.
The technique employed is similar to those used in [18, 36].

The solution of the inverse spectral problem for a Sturm-Liouville operator con-
sists the following steps: (1) an explicit description of the spectral data of the
considered operator and (2) development and justification the method of recovering
the operator corresponding to any given spectral data. The algorithm of recovering
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the potential q from the spectral data of a regular Sturm-Liouville operator based on
the transformation operators and the so-called Gelfand-Levitan-Marchenko equation
was developed by Gelfand and Levitan [15] and Marchenko [28] in early 1950-ies.

The first complete solution of the inverse problem that is based on an exact
integral approach was obtained by Gelfand and Levitan [1, 10, 13, 15, 21, 34] for
the potential problem in the Schrodinger wave equation. In electromagnetics, the
above approach is directly applicable to the case of inversion with a transient plane
wave, normally incident on a planar stratified lossless medium [15], provided that
the wave equation is converted to the Schrodinger equation. Other variations of
this classical integral inversion approach have been developed by considering special
choices of input-output pairs [7]. Generalizations of the Gel’fand-Levitan approach
to the case of oblique incidence [11, 12], dissipative media [22], etc, were all based on
deriving a Schrodinger-type equation from the basic wave equation through a series
of transformations, and reconstructing the unknown potential, which is related to
the medium parameters, via the Gel’fand-Levitan procedure. Other inverse methods
which are based on an integral equation and are in the same spirit as the Gel’fand-
Levitan approach are the ones due to [7, 10, 13]. A review of some of these integral
inverse methods and others can be found in the review paper by Newton [31].

In this aspect, the studies of Gelfand, Levitan [15], [25] and Marchenko[29] in-
clude bacis investigations related to constraction of the integral representations for
solutions and application them to various direct and inverse problems for Sturm-
Liouville differential operators.

In this paper, the Gelfand-Levitan-Marchenko (GLM) type main integral equa-
tion which is important for solution of inverse problem related to determining of the
Sturm-Liouville differential operators having discontinuity conditions inside a finite
interval is investigated.

2. Preliminaries

Let the function ϕ(x, λ) be the solution of equation (1.1) that satisfies the initial
conditions

ϕ(0, λ) = 1, ϕ′(0, λ) = 0, (2.1)

and the jump condition (1.3). Let λ0, λ1, ...be the eigenvalues of the boundary
value problem (1.1)-(1.3). Then ϕ(x, λn) (n ≥ 0) are the eigenfunctions of this the
boundary value problem. Let ϕ0(x, λ0

n) (n ≥ 0) be a solution of equation (1.1) in
the case q(x) = 0 satisfying the condition (1.2)-(1.3). λ0

0, λ
0
1, ... are eigenvalues of

the boundary value problem (1.1)-(1.3) when q(x) = 0. The numbers αn which

αn =
π∫
0

ϕ2(x, kn)dx, n = 0, 1, . . . (2.2)

are called the normallizing constant of the boundary value problem (1.1)-(1.3) .
The numbers α0

n, (n = 0, 1, . . .) are called the normalizing constant of the bound-
ary value problem (1.1)-(1.3) when q(x) = 0.

It is easy to show that in the case q(x) ≡ 0 the function e0(x, λ) which is solution
of equation (1.1) with initial conditions e0(x, λ) = 1, e′0(x, λ) = ik and the jump
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conditions (1.3) can be written as:

e0(x, λ) =

{
eikx, 0 < x < d,

a+eikx + a−eik(2d−x), d < x < π,

where a± =
1
2

(
a± 1

a

)
.

The following theorem related to the integral representation (transformation op-
erator) for the solution e(x, λ) can be found in [4].

Theorem 1. [4, Theorem 1.] Let
π∫
0

|q(t)| dt < +∞. Then each solution satisfying

the initial conditions e0(x, λ) = 1, e′0(x, λ) = ik and the jump conditions (1.3) has
the form

e(x, λ) = e0(x, λ) +

x∫

−x

K(x, t)eiktdt

with
x∫
−x

|K(x, t)| dt ≤ ecσ1(x)− 1, where σ1(x) =
x∫
0

(x− t) |q(t)| dt, c = a+ + |a−|+1.

If the function q(x) is differentiable then the kernel K(x, t) satisfies the following
properties:

K̃xx(x, t)− q(x)K̃(x, t) = K̃tt(x, t), K̃(x, x) =
a+

2

x∫
0

q(t)dt,

K̃(x, 2d− x + 0)− K̃(x, 2d− x− 0) =
a−

2

x∫
0

q(t)dt,

K̃(x,−x) = 0 where K̃ = K(x, t) + K(x,−t).

Remark 1. [4, Remark] It is easily shown that if q(x) ∈ L2 [0, π] then

Kx(x, .) ∈ L2 [0, π] and Kt(x, .) ∈ L2 [0, π] .

Let us denote the problem L as L0 in the case of q(x) ≡ 0. It is easily shown
that the solution ϕ0(x, k) satisfying the inital conditions ϕ0(0, k) = 1, ϕ′0(0, k) = 0
and the jump conditions (1.3) can be written as

ϕ0(x, λ) =
{

cos kx, 0 < x < d,
a+ cos kx + a− cos k(2d− x), d < x < π. (2.3)

Let ∆0(k) be a characteristic function of problem L0. Then characteristic equa-
tion of the problem L0can be expressed as

∆0(k) ≡ a+ cos kπ + a− cos k(2d− π) = 0.

The roots k0
n of this equation are eigenvalues of the problem L0.
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Lemma 1. [4, Lemma 1.] inf
∣∣k0

n − k0
m

∣∣ = β > 0, i.e., roots of characteristic equa-
tion ∆0(k) = 0 are separated.

Lemma 2. [4, Lemma 2.] Eigenvaules of the problem L are simple, that is

.

∆(kn) 6= 0.

Lemma 3. [4, Lemma 3.] Eigenvaules of the problem L have the following asymp-
totic behaviour

kn = k0
n +

dn

k0
n

+
δn

k0
n

, (2.4)

where δn =
1
k0

n

π∫
0

K´
t(π, t) sin k0

ntdt ∈ `2, k0
n = n + hn, sup |hn| ≤ M and

dn =
a+ sin k0

nπ − a− sin k0
n(2d− π)

2
.

∆0(k0
n)k0

n

π∫
0

q(t)dt is a bounded sequence.

Lemma 4. [4, Lemma 4.] Normalizing numbers of the problem L have the asymp-
totic behaviour

αn = α0
n + δn, (2.5)

where

α0
n = ((a+)2 + (a−)2)

π − d

2
+

d

2
+ 2a+a−(π − d) cos 2k0

nd + δ1n (2.6)

and

δ1n =
sin 2k0

nd

4k0
n

+ (a+)2
sin 2k0

nπ

4k0
n

− (a+)2
sin 2k0

nd

4k0
n

+
a+a−

k0
n

sin 2k0
n(π − d)

− (a−)2

4k0
n

sin 2k0
n(2d− π) +

(a−)2

4k0
n

sin 2k0
nd, δn ∈ `2 .

3. The Main Integral Equation

In this section, we will obtain the main integral equation for the spectral problem
(1.1)-(1.2)-(1.3) which has an important role in recovering the operator. In this
reason, we first prove the following Lemma:

Lemma 5. Assume that numbers {λn, αn}n≥0 satisfying the conditions of the form
(2.4) and (2.5) are given and denote

b(x) :=
∞∑

n=0

(
cos knx

αn
− cos k0

nx

α0
n

)
, (3.1)
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where

α0
n =





d

2
+

1
4k0

n

sin 2k0
nd, 0 < x < d,

[
(a+)2 + (a−)2

] π − d

2
+

d

2
+ 2a+a−(π − d) cos 2k0

nd, d < x < π.

Then b(x) ∈ W 1
2 (0, d) ∪ (d, 2π) .

Proof. Denote εn = kn − k0
n. Since

cos knx

αn
− cos k0

nx

α0
n

=
1

α0
n

(
cos knx− cos k0

nx
)

+
(

1
αn

− 1
α0

n

)
cos knx,

cos knx− cos k0
nx = −εn sin k0

nx− sin k0
nx (sin εnx− εnx)− 2 sin2 εnx

2
cos k0

nx,

we have b(x) = B1(x) + B2(x), where

B1(x) = −
∞∑

n=1

dnx sin k0
nx

α0
nk0

n

(3.2)

B2(x) =
∞∑

n=0

(
1

αn
− 1

α0
n

)
cos knx−

∞∑
n=1

δnx sin k0
nx

α0
nk0

n

−
∞∑

n=1
(sin εnx− εnx)

sin k0
nx

α0
n

−
∞∑

n=1
2 sin2 εnx

2
cos k0

nx

α0
n

.

(3.3)

Since εn = O

(
1
n

)
,

1
αn

− 1
α0

n

= − δn

k0
n

+O

(
1
n3

)
, where δn =

1
k0

n

π∫
0

K´
t(π, t) sin k0

ntdt

the series in (3.2) and (3.3) converge absolutely and uniformly on (0, d) ∪ (d, 2π) and

B2(x) ∈ W 1
2 (0, d) ∪ (d, 2π) , B1(x) ∈ W 1

2 (0, d) ∪ (d, 2π) . Consequently,

b(x) ∈ W 1
2 (0, d) ∪ (d, 2π) .

We will refer to the sequences {λn}n≥0 and {αn}n≥0 as the spectral charac-
teristics of the boundary value problem (1.1)-(1.3). Consider the function

F (x, t) =
∞∑

n=0

[
1

αn
ϕ0(x, kn)ϕ0(t, kn)− 1

α0
n

ϕ0(x, k0
n)ϕ0(t, k0

n)
]

(3.4)

with the help {λn}n≥0 and {αn}n≥0 sequences.
Firstly, we will investigate properties of the function F (x, t) by using the asymp-

totic expressions for ϕ0(x, λn) and ϕ0(x, λ0
n). Note that, the asymptotic expressions

of these functions for sufficiently large values of n are given in [4].
It is clear that if q(x) = 0 then the asymptotic formula for ϕ0(x, λ0

n) is

ϕ0(x, k0
n) =

{
cos k0

nx, 0 < x < d,

a+ cos k0
nx + a− cos k0

n(2d− x), d < x < π.
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Moreover, the asymptotic equalities

1
αn

=
1

α0
n + δn

=
1

α0
n

− δn

(α0
n)2

+ O

(
1
n3

)

and
1

α0
n

=
2

((a+)2 + (a−)2)π + (1− (a+)2 − (a−)2)d
+ O

(
1
n

)

are also satisfied.

It is easy to calculate that

(i)- if 0 < x < d and 0 < t < d then

F (x, t) =
a+

2
[b(x + t) + b(x− t)] ,

(ii)-if 0 < x < d and d < t < π then

F (x, t) =
a+

2
[b(x + t) + b(x− t)] +

a−

2
[b(x + 2d− t) + b(x− 2d + t)] ,

(iii)- if d < x < π and 0 < t < d then

F (x, t) =
a+

2
[b(x + t) + b(x− t)] +

a−

2
[b(2d− x + t) + b(2d− x− t)]

(iv)- if d < x < π and d < t < π then

F (x, t) =
(a+)2

2
[b(x + t) + b(x− t)] +

a+a−

2
[b(x + 2d− t) + b(x− 2d + t)]

+
a+a−

2
[b(2d− x + t) + b(2d− x− t)] +

(a−)2

2
[b(4d− x− t) + b(t− x)] .

Lemma 5 implies that F (x, t) is continuous and
d

dx
F (x, x) ∈ L2 [0, π].

Theorem 2. [16, Lemma 8]Let f(x), x ∈ [0, π].be an absolutely continuous function.
Then

∞∑
n=0


 1

αn

π∫

0

f(t)ϕ(t, kn)dt


ϕ(x, kn) = f(x) (3.5)

with uniform convergence in [0, π]
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Theorem 3. For each fixed x ∈ (0, π], the kernel K̃ (x, t) appearing in the repre-
sentation

ϕ(x, λ) = ϕ0(x, λ) +

x∫

0

K̃(x, t) cos ktdt (3.6)

satisfies the linear integral equation

F (x, t) + a+K̃(x, ξ)− a−K̃(x, 2d− ξ) +

x∫

0

K̃(x, ξ)F0(ξ, t)dξ = 0. (3.7)

Proof. One can consider the relation (2.3) with respect to cos kx. Solving this equa-
tion we obtain

cos kx =





ϕ0(x, k), 0 < x < d,

a+ϕ0(x, k)− a−ϕ0(2d− x, k), d < x < π.
(3.8)

Using equalities (3.6) and (3.8), we calculate

ΦN (x, t) =
N∑

n=0

(
ϕ(x, kn)ϕ(t, kn)

αn
− ϕ0(x, k0

n)ϕ0(t, k0
n)

α0
n

)

=
N∑

n=0

(
ϕ0(x, kn)ϕ0(t, kn)

αn
− ϕ0(x, k0

n)ϕ0(t, k0
n)

α0
n

)

+
x∫
0

K̃(x, ξ)
N∑

n=0

ϕ0(t, k0
n) cos k0

nξ

α0
n

dξ

+
x∫
0

K̃(x, ξ)
∞∑

n=0

(
ϕ0(t, kn) cos knξ

αn
− ϕ0(t, k0

n) cos k0
nξ

α0
n

)
dξ

+
t∫
0

K̃(x, ξ)
N∑

n=0

ϕ(x, kn) cos knξ

αn
dξ.

Therefore we can write

ΦN (x, t) = ΦN1(x, t) + ΦN2(x, t) + ΦN3(x, t) + ΦN4(x, t),

where

ΦN1(x, t) =
N∑

n=0

(
ϕ0(x, kn)ϕ0(t, kn)

αn
− ϕ0(x, k0

n)ϕ0(t, k0
n)

α0
n

)

ΦN2(x, t) =
N∑

n=0

ϕ0(t, k0
n)

α0
n

x∫
0

K̃(x, ξ) cos k0
nξdξ

ΦN3(x, t) =
∞∑

n=0

x∫
0

K̃(x, ξ)
(

ϕ0(t, kn) cos knξ

αn
− ϕ0(t, k0

n) cos k0
nξ

α0
n

)
dξ

ΦN4(x, t) =
N∑

n=0

ϕ(x, kn)
αn

t∫
0

K̃(x, ξ) cos knξdξ.
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Let f(x) ∈ AC [0, π] . Acording to Theorem 2, we obtain (uniformly on x ∈ [0, π]):

lim
N→∞

π∫
0

f(t)ΦN (x, t)dt = 0

lim
N→∞

π∫
0

f(t)ΦN1(x, t)dt =
π∫
0

f(t)F (x, t)dt

lim
N→∞

π∫
0

f(t)ΦN2(x, t)dt = a+
x∫
0

f(ξ)K̃(x, ξ)dξ + a−
x∫
0

f(ξ)K̃(x, 2d− ξ)dξ

lim
N→∞

π∫
0

f(t)ΦN3(x, t)dt =
π∫
0

f(t)
x∫
0

K̃(x, ξ)F0(ξ, t)dξdt

F0(x, t) =
∞∑

n=0

(
ϕ0(t, kn) cos knx

αn
− ϕ0(t, k0

n) cos k0
nx

α0
n

)

F (x, t) = a+F0(x, t) + a−F0(2d− x, t)

=
∞∑

n=0

(
ϕ0(t, kn)ϕ0(x, kn)

αn
− ϕ0(t, k0

n)ϕ0(x, k0
n)

α0
n

)

lim
N→∞

π∫
0

f(t)ΦN4(x, t)dt = lim
N→∞

π∫
0

f(t)
t∫
0

K̃(t, ξ)
N∑

n=0

ϕ(x, kn) cos knξ

αn
dξdt.

Using ψ(x, kn) = βnϕ(x, kn) and αnβn = ∆̇(kn)

= − lim
N→∞

π∫
0

f(t)
∑

|kn|≤N

ψ(x, kn)
∆̇(kn)

t∫
0

K̃(t, ξ) cos knξdξdt

= − lim
N→∞

π∫
0

f(t)
∑

|kn|≤N

Res
λ=λn

[
ψ(x, k)
∆(k)

t∫
0

K̃(t, ξ) cos λξdξ

]
dt

= − lim
N→∞

π∫
0

f(t)
1

2πi

∮
GN

ψ(t, k)
∆(k)

t∫
0

K̃(t, ξ) cos λξdξdλdt

= − lim
N→∞

π∫
0

f(t)
1

2πi

∮
GN

ψ(t, k)
∆(k)

eImkte−Imkt
t∫
0

K̃(t, ξ) cos λξdξdλdt

= −
π∫
0

f(t) lim
N→∞

[
1

2πi

∮
GN

ψ(t, k)
∆(k)

eImkte−Imkt
t∫
0

K̃(t, ξ) cos λξdξdλ

]
dt, 0 < t < x,

where GN :=
{

k : |k| = ∣∣k0
∣∣ +

β

2
, n = 0, 1, . . .

}
,

Gδ =
{
k :

∣∣k − k0
n

∣∣ ≥ δ, n = 0, 1, . . . , δ > 0
}

and δ is sufficiently small positive

number
(
δ ¿ β

2

)
.

The solution ψ(x, k) of equation (1.1) satisfying the conditions ψ(π, k) = 0,

ψ′(π, k) = −1 and the jump conditions (1.3) is an entire function of λ and

ψ(x, k) = O

(
1
|k|e

|Imk|(π−x)

)
, |k| → ∞, |∆(k)| ≥ Cδ |k| e|Imk|π, k ∈ Gδ,
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∣∣∣∣
ψ(x, k)
∆(k)

e|Imk|t
∣∣∣∣ ≤

Cδ

|k|2 e|Imk|(t−x) →
|k|→∞

k∈Gδ

0 (3.9)

and

lim
|k|→∞

max
0≤t≤π

e−|Imk|t

∣∣∣∣∣∣

t∫

0

K̃(t, ξ) cos λξdξ

∣∣∣∣∣∣
= 0. (3.10)

Using (3.9) and (3.10), we obtain

lim
N→∞

π∫

0

f(t)ΦN4(x, t)dt = 0.

Hence, we find that

lim
N→∞

π∫
0

f(t)ΦN (x, t)dt =
π∫
0

f(t)F (x, t)dt

+a+
x∫
0

f(ξ)K̃(x, ξ)dξ − a−
x∫
0

f(ξ)K̃(x, 2d− ξ)dξ

+
π∫
0

f(t)
x∫
0

K̃(x, ξ)F0(ξ, t)dξdt = 0.

Then, in view of the arbitrariness of f(x), the main integral equation

F (x, t) + a+K̃(x, ξ)− a−K̃(x, 2d− ξ) +

x∫

0

K̃(x, ξ)F0(ξ, t)dξ = 0

is obtained.

When t < x this equation implies (3.7).
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