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ABSTRACT 
 
In this study, the objective is to compare the behavior of the Lp (p = 1, 2 and ∞) state estimators and their combinations  
when applied to a three phase balanced power system under steady state conditions. The general approach in state 
estimation is to minimize a residual of measurement equations.  The estimate is dependent on the norm used to measure this 
residual. The performance of the Lp estimators is compared under both normal and bad data conditions. The results are 
illustrated using the IEEE 6, 30 and 57-bus test systems. The comparison is conducted based on accuracy and computational 
time. The main conclusion of this study is that the computational time and the number of iterations required for L1 and L∞ 
estimators to converge substantially reduced using a combination of the L2 estimator with these estimators. The use of a 
suitable filtering technique and weighting factors may enhance the estimator output.   

Keywords - Power system state estimation, least absolute value (LAV), least squares (LS), weighted least squares (WLS), 
maximum absolute deviation estimators. 

 

GÜÇ SİSTEMLERİNDE BİRLEŞTİRİLMİŞ Lp (L1, L2   and L∞) DURUM 
KESTİRİMCİLERİ  

 
 

ÖZET 
 
Bu çalışmanın amacı, sürekli durumda ve üç fazlı dengeli güç sistemlerine uygulandığında, Lp (p = 1, 2 ve ∞) durum 
kestirimcilerinin ve onların kombinasyonlarının davranışlarını karşılaştırmaktır. Durum kestiriminde genel yaklaşım, ölçüm 
denklemlerindeki farkı minimum yapmaktır. Kestirim, bu farkı ölçmek için kullanılan norma bağlıdır. Lp kestirimcilerinin 
performansları, hem normal hem de kötü veri koşullarında karşılaştırılmıştır.   Sonuçlar, IEEE 6, 30 ve 57 baralı sistemler 
kullanılarak elde edilmiştir.  Karşılaştırma, doğruluk ve hesaplama süresine göre yapılmıştır.  Bu çalışmanın ana sonucu, L1  
ve L∞ kestirimcilerinin yakınsaması için gerekli süre ve iterasyon sayısı, bu kestirimcilerin  L2  kestirimcisi ile kombine 
edildikleri zaman azalmaktadır. Uygun filtreleme ve ağırlıklı faktörler kullanıldığında, kestirim sonuçları daha da 
iyileştirilebilir.  
  
Anahtar kelimeler - Güç sistemlerinde durum kestirimi, en küçük mutlak değer, en küçük kareler, ağırlıklı en küçük 
kareler, maksimum mutlak değer kestirimcileri.  
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1. INTRODUCTION 
 
State estimation, based on mathematical relation between 
system state variables and actual measurements, is an 
essential function in energy management system for system 
security monitoring and the control of power systems [1]. 
In electric power systems, efficient control and analysis of a 
complex power system requires accurate data information 
from energy control center. The incorporation of computers 
into these processes has increased with the implementation 
of data acquisition systems. Rapid data collection and 
processing are provided by modern telemetry systems, 
although physical measurements are never entirely free of 
noise and random errors. Unfortunately, due to financial 
constraints it is not practical to measure all state variables 
for the complete determination of the system state. 
Therefore, the information obtained from telemetry must be 
supplemented by the less accurate predictions of 
consumptions at the nodes in the network. These 
predictions are frequently referred to as 
pseudomeasurements. Measurements and 
pseudomeasurements are used to calculate system 
parameters (bus voltage and its angle) in the network 
through the use of a state estimator which provide a means 
between the mathematical model of the system and the 
input data [2].  
 
With the increasing complexity of modern power systems 
there is a need for efficient state estimators which will form 
a basis for the implementation of real time control of these 
systems. Among the potential algorithms and techniques for 
state estimation Lp based estimators are of great interest. 
Many techniques have been developed for estimating power 
system situations. Most of these techniques are based on 
results obtained from L2 estimators [3, 4]. Recently, a new 
focus arises on L1 and L∞ estimators [5, 6]. This paper 
proposes a combination of Lp (p = 1, 2 and ∞) estimators 
for estimating bus voltages and their angles. The proposed 
methods are tested on IEEE 6-bus, 30-bus and 57-bus test 
systems.  
 

2. STATE ESTIMATION IN POWER SYSTEMS 
 
In electric power systems, different types of analog and/or 
digital measuring devices are used to measure active power, 
reactive power, voltage, and currents.  These continuous or 
analog quantities are monitored using current and potential 
transformers. The analog quantities pass through 
transducers and analog-to-digital converters, and the digital 
output is then telemetered to control  centers,  over   various  
 
 
 

communication links. The data received at the energy 
control centers are analyzed and processed by a computer to 
inform the system operator about the present state of the 
system.  Physical measurements are never entirely free of 
noise and random errors. 
 
A prerequisite of any power system security monitoring or 
control scheme is a reliable database. In these databases the 
raw observations are systemically processed to attenuate the 
effects of uncertainty of the measurement. Any form of 
filtering implies a loss of information and, consequently, 
the complete determination of the system state may require 
additional measurement with inherent extra cost. In power 
system steady state analysis, for N buses, there are 2N-1 
independent variables consisting of voltage      magnitudes 
Vk (k=1,...,N) and voltage angles θk (k=2,...,N) at all buses. 
Measurements are not adequate for dynamic operation in 
the presence of measurement errors and possible failure of a 
section of the real time data collection equipment. 
Consequently more measurements than the number of 
unknown state variables are needed. The way in which this 
redundancy is utilized, gives rise to various techniques for 
state estimation. State estimation techniques may be 
broadly divided into two categories, static and dynamic 
estimation. Static methods mainly have application in 
determination of load flow in transmission network, where 
the approximation of steady state over a short period of 
time is adequate.  The assumption will be valid if the 
system is subjected to relatively low frequency 
disturbances. Dynamic estimation, on the other hand, is 
normally associated with transient or dynamic stability 
problems where the dynamic of the elements of the system 
must be considered.  Rapid data collection and processing 
must be provided, since the time scale is of the order of 
seconds.   
 
Static state estimation meets almost all the control center 
needs due to the fact that dynamic state estimation is 
computationally intensive.  In addition the highly 
unpredictable and nonlinear nature of power systems makes 
defining a reliable model of the dynamic power system a 
very difficult task.  For a given power system structure and 
certain set of parameters and operating data, the purpose of 
the static estimation is to compute the network operating 
data and to assemble a complete and reliable database. The 
unknown independent variables of the estimation scheme 

are the true node injections 
−

S (t), the true structure g(t) and 
the true parameters ρ(t).  The structure g(t) describes the 
interconnection of power system different components.  
6 
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The parameter vector ρ(t) contains the line and meter 
characteristics.  The unknown dependent state vector 

x̂ contains complex voltages 
−

V (t) which are of dimension 
n = 2N-1, where N is the number of system buses. The 
known quantities are the measurements z(t) consisting of 
telemetered line flow, bus injections and bus voltages. At a 
fixed time instant the measurements are related to the 
unknown variables as follows 
 
z =H (x,g,ρ) + e                                              (1) 
 
The measurement error e is a random vector representing 
the normal difference between the actual observation z and 
H.  Because of the presence of error e, the dimension m of 
the measurement vector z must be larger than the dimension 
n of the unknown x. A possible measurement of the 
redundancy is the ratio η = m/n. The error e is usually 
caused by the measurement noise, modeling errors, 
communication errors, coding errors and the finite meter 
time constants.   
 
 

3. Lp ESTIMATION NORMS 
 
Regression analysis is one of the most frequently used 
methods in empirical science [7]. The description of 
collected or measured data by linear regression functions 
with several parameters is needed for modeling and 
predicting. In electric power system applications, 
measurements are usually plentiful. The system of linear 
equations is said to be an over-determined system. The 
discrete linear Lp approximation for the power system over 
determined set of linear equation is given by 

 
r = H x – z                    (2) 
 
where r is the residual vector, H ∈  Rmxn is the process 
matrix, z ∈  Rn is the measurement vector, m is the number 
of measurements and n is the number of the unknowns. The 
length of r in the Lp norm is given by, 
 

|| r ||p  = ( ∑
=

m

i
i pr

1

|| )1/p    ,       (1≤ p ≤∞)            (3) 

In order for x̂  to be the solution the above equation can be 
written as, 
  
 || H x̂  - z ||p  = min

x
|| H x - z ||p                                 (4) 

 
 
 

4. Lp ESTIMATION MODELS IN POWER SYSTEMS 
 

The state of an electrical power network may be defined as 
the flow of complex power through the network branches 
and the net injection of complex power at each bus.  The 
state of a network at a given moment may be completely 
described by the set of all complex bus voltages, 
 
V1 (cosθ1 +j sinθ1),…, VN (cosθN +j sinθN)            (5) 
 
It is assumed that the connections between the nodes and 
the parameters of the branches are completely known.  For 
a system with N buses, by choosing one reference phase 
angle, there are therefore 2N-1 unknown state variables to 
be determined in order to describe the state of the system.  
Typically, power systems have far more measurements 
available than state variables, which allow the use of 
statistical methods to estimate the state variables of the 
power system. 
 
A measurement vector z may be created which contains m 
measurements from the power system.  Measurements 
include real and reactive power line flows and bus 
injections, voltage magnitudes at buses, tap ratios for 
transformers, and some times, phase angle measurements.  
The 2N-1 state variables constitute the state vector x, which 
is related to the measurements z in a regression model as,  
 
z = h(x) + e                                 (6) 
 
The vector e is the error vector, which contains m variables 
e1,…,em. Vector e purpose is to account for the uncertainty 
in the measurements and the model. Hence, e1,…,em are 
random variables assumed to have a zero mean and a 
known diagonal covariance matrix R,  
 
R = diag(σ1

2,…, σm
2).                                    (7) 

 
The data pattern in z which is represented by the vector h(x) 
is formulated such that, for an m sets of observations that 
are related to a number of state variables, x1, x2 and xN, 
through a linear regression model, are given by, 
 
 
 z 1 = h11x1 + h12x2 +   …  + h1n  +  e1  
 z 2 =h21x1 + h21x2  +   …  + h2n  + e2 
   .            .          .                     .        . 
 z 1m =hm1x1 + hm2x2 +   …  + hmn +em                                  (8) 
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Equations (8) can be written as,  
 

 
The N-1 variables h1i, h2i…hn-1,i are termed as independent, 
or explanatory, variables, while zi is termed as the response, 
or dependent variable.  A data point is (h1i, h2i…hn-1,i, zi), 
and lies in an N-dimensional space, which is made up of 
two subspaces, the response space and the factor space also 
called the design space.  The response space is one-
dimensional and contains the response variable.  The factor 
space is made up of n-1, h-dimensions.  The slopes of the 
hyperplane in Rn are x1,…,xN-1, while the intercept is xN. 
Hence, the task is to find x such that the hyper planes best 
fits the observations to the independent variables.  Equation 
(9) can be represented in matrix form as z =Hx + e, where  
 

H = 



















−

−

−

1......
...............
1......
1......

1,1

1,221

1,111

nmm

n

n

hh

hh
hh

                              (10) 

 
The matrix H is called the design matrix, and x the 
parameter vector. 
In power systems the task of state estimation is, thus, to use 
statistical methods to find x such that the measurements 
given by z best fit the known system model provided by the 
design matrix.  
 
4.1. Weighted Least Squares (WLS) 
 
Given the regression model of (6), let R be the variance-
covariance matrix.  The objective function is given by,  
 

J(x)= ∑
=

m

j

ir
1

2

i
)(

2
1

σ
=

2
1

rTR-1r=(z–Hx)TR-1(z–Hx)        (11) 

 
where 1/ σi 2 acts as a weight. Minimizing J(x) yields 
 

  
x
xJ

∂

∂ )(
= 0 = - HT R-1( z – Hx )                            (12) 

By taking the pseudo inverse of Hx the estimated x̂  is 
found such that, 
 
x̂ = (HT R-1 H)-1 HT x̂ R-1 z .                                     (13) 
 
This leads to, 
 

ẑ =H x̂ =H(HTR-1H)-1 HT R-1 z = Sz                          (14) 
 
where S is called the hat matrix.  This formula is used to 
form the residual sensitivity matrix W that relates the 
residuals to the errors, 
 
 r= z- ẑ = z-Sz = (I–S)z = Wz                                    (15) 
 
Note that the matrix W is singular, hence there are multiple 
m-vectors z which can satisfy r = Wz.  It can be seen that 
these errors are considered as linear combinations of the 
residuals.  This is important both in WLS residual analysis 
and in explaining certain properties of the WLS when gross 
errors are involved.  For example, the property of having 
linear combinations of large errors resulting in small 
residuals, and large error results in several large residuals.  
 
 
4.2. Least Absolute Value (LAV) 
 
The least absolute value (LAV) criterion is based on the L1 
norm and has very useful bad data rejection properties. 
Equation (3) can be solved by substituting the value of ri

+ -  
ri

- for the residual vector ri, where ri
+ and   ri

- represent the 
positive and negative parts of r respectively. The 
constraints Hx are linearized about the current xk which give 
rise to the following,  
  

min→   ( eT  )



















−

+

−

+

x
x
r
r

                                        (16) 

with the constraint 

( I , -I , Hx  )   



















−

+

−

+

x
x
r
r

 =  z                                           (17) 

 
 
Equation (17) can be solved for ∆x using the simplex linear 
programming method.  Hx is the Jacobian matrix. The value 
of x is then updated, xk+1 = xk + ∆x. The constraints are 
linearized at the updated operating point and the procedure 
is repeated until convergence occurs.  
 
4.3. Least squares estimator (LS) 
 
The least squares solution (LS) is obtained when p = 2. The 
LS solution has been commonly used in power system 

zi=h1ix1+h2ix2+….+hn-1xn-1+xn+ei,     
i=1,.....,m                    

  
(9)   
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applications.  It provides one way of dealing with an over-
determined system. The LS method is preferred largely 
because the determination of the desired parameters is 
mathematically simple.  Based on the assumption that the 
error r in the measurements is independent and normally 
distributed, Equation (2) can be rewritten as, 
 
 

min ||)z  - x H || ||z  - x H || (||z  - x H || T2
2 →=

 
 

z HHxH TT =   

z HH)(H x̂ T-1T=  
  

(18) 

The quantity T-1T HH)(H is the pseudoinverse of   matrix 
H. 
 
4.4. Maximum Absolute Deviation 
 
The maximum absolute value criterion is based on L∞ 
norm.  In this, the optimal estimator minimizes the H∞ 
norm of the power spectrum density matrix of the 
estimation error ri such that, 
 
 min s = max  | ri | = || Hxi - zi ||∞                            (19) 
 









− e

e
H

H

x

x








f
x









−

≥
z

z

                            (20) 
 
 
Simplex linear programming method is used to solve for 
∆x. As the constraints are inequality constraints, it is 
necessary to add both surplus and artificial variables to each 
equation.  
 
5. SIMULATION RESULTS 
 
The IEEE 6, 30 and 57 bus networks were used to evaluate 
the comparison of Lp (L1, L2 and L∞) estimators. The 
topologies of the 6-bus, the 30-bus and the 57-bus systems 
as well as the measurement set are shown in Fig. 1, Fig 2 
and Fig 3. Test system data are given in reference [8] and 
[9]. The methods have been programmed in MATLAB on a 
Pentium III-800 MHz computer with 516 MB RAM. The 
proposed algorithm was tested on two different cases in 
which the measurement sets are assumed contaminated with 
different levels of noise. The noise level varies between 0% 
(case 1-without noise) to 20% (case 2-with noise) of 
random noise. The noise is introduced in both active and 

reactive power measurements. The two study cases have 
identical loads and circuit topology. The results obtained 
both two cases are tabulated and given a case number. 
 

 
Figure 1.  IEEE 6-bus test system [6]. 

 
 

Figure 2.  IEEE 30-bus test system [10]. 
 
 

 
Figure 3.  IEEE 57-bus test system [7] 
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Figure 4. Power flow state estimation [11]. 
 
 

The output for each case includes the bus voltage magnitudes and 
voltage phase angles. The residuals for both two cases are 
calculated and plotted. The computational time consumed by each 
state estimator is measured and compared. Table 1, Table 2 and 
Table 3 contain the output results for without and with noise cases 
under study. It can be inferred from Table 1, 2 and 3 that the 
method of the least absolute value gives the least residual and 
hence the more accurate result. The computational time is the least 
in case of the least square estimator.In low noise condition, the 

two methods give equally accurate results. But with high noise 
data, which is the practical case in power application, the 
least absolute value gives better results.  
 
Using a combination of the L2 estimator with the other 
estimators can substantially reduce the computational time 
and the number of iteration needed for L1 and L∞. In the 
combined method, the least square estimator L2 is executed 
for one iteration, and then the other estimator is applied. 
For IEEE 6-bus, 30-bus and 57-bus test systems with the 
same input data, when this new combination method is 
applied, the results in Table 1, Table 2 and Table 3 are 
obtained.    
 

Table 1. Comparison with respect to residuals and computational time of 
Lp estimators for the 6-bus test system 

Residuals Computational Time 
(sec.) Lp 

norm Without 
Noise 

With 
Noise 

Without 
Noise 

With 
Noise 

L1 2.7804 2.7837 0.93 0.94 

L2 2.7808 2.7850 0.0600 0.0500 

L∞ 2.7832 2.7878 0.3800 0.3900 

 

Table 2. Comparison with respect to residuals and computational time of 
Lp estimators for the 30-bus test system 

Residuals Computational Time 
(sec.) Lp 

norm Without 
Noise 

With 
Noise 

Without 
Noise 

With 
Noise 

L1 13.4091 13.4105 2.600 4.010 

L2 13.4416 13.4385 0.600 0.610 

L∞ 13.4227 13.4155 5.930 6.150 

 

Table 3. Comparison with respect to residuals and computational time of 
Lp estimators for the 57-bus test system 

Residuals Computational Time 
(sec.) Lp 

norm Without 
Noise 

With 
Noise 

Without 
Noise 

With 
Noise 

L1 18,187 18,345 8,320 9,003 

L2 18,304 18,620 1,066 1,072 

L∞ 18,450 18,721 11,324 11,938 

 

Yes 

No 

Read measurements Read system topology 

Filtering the input data 

Set a starting value of 
the state variables 

 

Construct Ybus matrix 

Calculate the mismatch 

Mismatch 
 ≤ 0.001 

Construct Jacobian 
matrix H

Run the Lp state 
estimator, solve for 

∆x  
H ∆x = z 

Update x 
 x(k+1)= x(k)+ ∆x 

Output  
to other 

programs 
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Table 4 shows that the computational time is much more 
less than it’s needed for L1 and L∞ estimators, individually.  
It is advisable to use the combined Lp method to estimate 
the voltage angles and voltage magnitudes in buses. 
 
Table 4.  Comparison with respect to computational time of the combined 
Lp estimators for test system 
 

 

Figure 4. Comparison with respect to computational time of the L∞  and 
the combined Lp (L2+ L∞) estimators for the 6-bus test system 
 

Figure  5. Comparison with respect to computational time of the L1 and 
the combined Lp   (L2+L1) estimators for the 6-bus test system  

Figure 4, 6 and 7 show comparison with respect to 
computational time of the L∞  and the combined Lp (L2+ L∞) 
estimators for the 6-bus test system, the 30-bus test system 
and the 57-bus test system respectively. Figure 5 shows 
comparison with respect to computational time of the L1 
and the combined Lp   (L2+L1) estimators for the 6-bus test 
system.  
 

 
Figure 6. Comparison with respect to computational time of the L∞  and 
the combined Lp (L2+ L∞) estimators for the 30-bus test system 

Figure 7. Comparison with respect to computational time of the L∞  and 
the combined Lp   (L2+ L∞ ) estimators for the 57-bus test system 
 

 
6. CONLUSIONS 

 
This paper presented a new and efficient combined method 
to estimate the voltage (angles and magnitudes) in system 
buses. The proposed method based on combination Lp 
estimators for enhancement of computational speed.. As the 
proposed method converges much faster than the least 
absolute value estimator for large power systems, the 
computational time and iteration numbers needed for 
convergence substantially reduces. At the same time, 
residuals obtained using a combination of Lp norms are the 
same as residuals obtained using Lp norms individual. 
Results on three sample power systems presented. The state 
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estimation technique based on LP norms is a very effective tool 
and can be applied in a variety of areas in engineering. 
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