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LİNEER PROGRAMLAMA PROBLEMLERİNİN 
VEKTÖREL ANALİZİ ve  EKONOMİK YORUMLARI 

 
Yılmaz YÜCEL* 

 
ÖZET:     Bir kaynaklar bankasından çekilerek icra edilecek bir miktar faaaliyet veya üretilecek bir 
miktar ürünler grubu verilmiş olsun. Eğer kaynakların miktarı veya kullanılacak yollar kısıtlanmış ise 
herbir faaliyeti icra etmek veya herbir ürünü verimli bir şekilde üretmek imkânsız olabilir. 
Bu bir tahsis problemidir ve yöneylem araştırması tahsis teknikleri faaliyetlere veya ürünlere 
kaynakların tahsis  yollarını  genel etkinliğe ilişkin bazı ölçümlerin optimizasyonunu sağlayacak 
şekilde belirler. Yöneylem araştırması işlerinde böylesine çözümleri bulmada en güçlü yöntem 
matematik programlama ve kullanılan matematik programlama tipi ise lineer programlamadır. 
 
Anahtar sözcükler : Lineer programlama, matematik programlama ,  optimizasyon. 
 

VECTORAL ANALYSES OF LINEAR PROGRAMMING PROBLEMS AND THEIR 
ECONOMICAL COMMENTRIES 

  
SUMMARY: Given that a number of activities are to be performed a number of  products are to be  
produced and  that the group of activities or products draw on a common bank of resources : if  the 
amount of resources or the ways in which thay may be used are restricted, it may be impossible to 
perform each single activity or produce each single product in the most efficient way. 
This is allocation problem and operations research allocation techniques determine ways of 
allocating resources to activities or products so that some measure of overall efficiency is 
optimized.In operations research work, mathematical programming is the most powerful method of  
finding such solutions, and the most commonly used type of mathematical programming is linear 
programming. 
 
Keywords : Linear programming, mathematical programming , optimization  
 

Burada L.P.(Linear Programming) analitik-nümerik açıdan ele alınmış simpleks algoritması matris-
vektör işlemleri ile elde edilmiştir. Uygulamada çok kullanılan bir yöneylem araştırması tahsis tekniği 
olarak lineer programlamanın ayrıntıları Tulunay, Gass  , Walsh, Bazarra, Beale, Orchard-Hays, Taha, 
Hadley, Hillier and Lieberman da bulunabilir[8,5,9,2,1,4,7,3,6]. Burada kullanılan notasyonların bir 
kısmı      Walsh ‘da kullanılan notasyonlardır. Nümerik olarak analizi yapılan problem ise Hillier and 
Lieberman'ın Operations Research 2'nd Ed.’ nın  17'inci sayfasından alınmış olup üzerine ekonomik 
yorum katılmaya çalışılmıştır. Okuyucunun  konvekslik, temel uygun çözümler  v.b.g. belirli bir 
bilgisinin olduğu  varsayılmıştır. 
     Bir firma ürettiği ve  tipindeki mamullerin üretimini programlamak istiyor. Mamullerin 
imalatında kullanılan 3 ayrı malzeme olup bunların stok seviyeleri ve her tip mamulün bir biriminde 
kulanılan miktarlar ve bunların sağlayacağı kârlar aşağıdaki tabloda gösterilmiştir. Buna göre 
maksimum kârı sağlayacak optimum imalat programını bulup ekonomik yorumunu yapınız? 

x1 x2

 
 

 Mamül Tipleri Malzeme Stok  
Malzeme x1 x2  Seviyesi 

A       1       1    50 
B       1       2    80 
C       3       2  140 

Birim Kârlar       4       3  
                                                           
* Yrd. Doç. Dr. Trakya Ün.  Müh-Mim. Fak. Bilg. Müh. Böl. Edirne 
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Burada Rank (A)=m olup A da m sayıda lineer bağımsız kolon vektörü bulunmaktadır. Bu lineer 
bağımsız kolon vektörlerinden bir B temeli oluşturalım. B temelindeki her kolonun indisi A daki 
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Burada B temelinden 3 üncü kolon vektör çekilmekte ve G matrisinden 1 ‘nci kolon vektör B ye 
sokulmaktadır. 
Böylece l=3 k=1 dir. ise   dür.  olup olması 

gerektiğinden l=3 olduğuna göre 1‘inci kolondaki 3 ‘üncü satır  elemanı kullanılmaz. 
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olup G nin ikinci kolon vektörü temele girecektir. 
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 yani B ‘nin 1 inci kolon vektörü olacaktır.   
Burada B temelinden 1 inci kolon vektör çekilmekte ve G matrisinden 2 inci kolon vektör B ye 
sokulmaktadır. 
Böylece l=1 k=2 dir. ise  y y dir. olupρ ≠ olması 

gerektiğinden l=1 olduğuna göre 2 ‘inci kolondaki 1 ‘inci satır  elemanı kullanılmaz. 
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   olarak yazabiliriz. 
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olarak optimum çözüme ulaşılır. x  birim tahsis edilmelidir. x2 110 40= =    
   Ekonomik Yorum : 
   İlk uygun temel çözümde  ve x buluruz ki bu firmada hiç bir mamül 
üretilmediğini gösterir. Onun için x x  çözüm değerleri A,B ve C malzemelerinin henüz 

kullanılmadığını gösterir. vektörleri  j mamulünden belli bir miktar üretmek için lüzumlu 
kaynakların miktarını ,aynı zamanda kaynaklarda meydana gelecek azalmayı gösterir. 

x x3 450 80= =  
x3 4 5, ,

j

5 140=

y
→

İlk çözümde y vektörü  ‘in  üretimini bir birim arttırmakla  birim 

azalacağını gösterir. Benzer analiz  için de yapılabilir. 
 olduğu yani ekonomik açıdan sağladığı kazanç x  

‘ninkinden daha yüksek olduğu için x  ‘i üretim karışımına sokarak yani  lineer programlama diliyle 

 temele sokularak ilk çözüm düzeltilir. 
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   ‘i temele sokulduktan sonra (9) ile hangi vektörü temelden çıkaracağımızı buluruz ki  x1
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β
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 olduğundan temeldeki 3’üncü kolon vektörüdür. Temeldeki x  ‘in 

çözüm değerinin niçin 140/3 olduğunu şöyle açıklayabiliriz. Bir birim  üretmek için 1 birim A  1 
birim B ve 3 birim  C gereklidir. A,B ve C nin kullanılmayan miktarları ise sırasıyla 50,80 ve 140 
olup (9)  ile verilen oranlar cümlesi içinde en küçük oran x  in üretilebilecek maksimum miktarını 
gösterir. Eğer daha fazla x  üretmeye kalkarsak C kaynağının buna yetmediğini görürüz. 

1

x1

1
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  II uygun taban çözüm : Burada çözüm değerleri   ve olup bunu 
şöyle yorumlayabiliriz. Eğer sadece  üretilirse üretilebilecek maksimum miktar 140/3 birimdir. Bu 
durumda 10/3 birim A  ve  100/3 birim B malzemesi  kullanılmayacaktır. Çünkü eldeki 50 birim A 
malzemesinden sadece  140/3 birimi  x  üretimi için kullanıldı.  Aynı şekilde 80 birim B 
malzemesinden sadece 140/3 birimi kullanıldı  ve 100/3 birimi kaldı. Bu çözüm için amaç 
fonksiyonunun değeri 560/3 olup ilk çözüme  göre   560/3 TL lik artış olmuştur. 

x x3 410 3 100 3= =/ /  x6 140 3= /
x1

1

Şimdi II çözümün optimum olup olmadığını inceleyelim. Burada   den bir birim üretmekle x  
‘in 2/3   x  ‘ün 1/3   ‘ün 4/3 birim azalacağını gösterir. Halihazırda II çözüme göre C 
malzemesinin tamamı kullanılmış durumdadır. 

y2

→
x2 1

3 x4

    Eğer bir birim x  yi üretim karışımına sokarak yeni bir çözüm planlarsak o zaman hepsi x  
üretiminde kullanılan C malzemesinin bir kısmını serbest bırakmak için planlanan  x  üretiminde  
indirim yapılması gerekir. Üretim karışımına ilave ettiğimiz her  birimi için x  mamulünü  2/3 
birim azaltmamız gerekir. Çünkü  x  için 3 birim C lazım iken  x  için 2 birim C lazımdır. 

2 1

1
x2 1

1 2
  Şimdi  x  nin bir birim arttırılmasının planlandığını varsayalım. Bu x ' in 2/3 birim azalacağını 
gösterir. x in 2/3 birim azalması aynı zamanda A ve B malzemelerini bırakacaktır. Bir birim  x  ‘nin  
1 birim A ve 2 birim B malzemsine ihtiyacı olduğu bilinmektedir. Öte yandan halihazırda ’in 
azalmasıyla A ve B malzemelerinin bir kısmı bırakılmış durumdadır. O halde  ‘nin her birimi için 

bu kaynaklardan lüzumlu miktarlar A için 1-2/3=1/3 B için 2-2/3=4/3 birimdir. Bu iki rakam   nin 
 ve   elemanlarına karşı gelir. 

2

1

yρ2

1

2
x

y2

→

1
x2

yρ21 2

Yukarda c y TL  üretimini 2/3 birim düşürdüğümüz zaman firmanın kaybedeceği kazanç 
miktarını gösterir. Bir birim x  için 1/3 birim A ve 4/3 birim B malzemesinden kullanılmış olmasına 
rağmen bunlar için c y  ile   ‘nin kârı olan c  mukayese edilir ki burada c c  dir. Buna 
göre  ‘nin üretime sokulması kârı daha da arttıracağı için biraz daha  birimi ihtiva eden bir 
çözüm düzenlenerek ikinci çözüm düzeltilir. (9) ile temelden çıkacak vektörü hesaplarsak 
(10/3)/(1/3)=10 buluruz ki bu temeldeki 1’inci kolon vektörü olup yeni çözüm değerinin 10 birim 
olacağını gösterir. Çünkü  üretimi sıfırdan 10 birime çıktığı zaman A malzemesinin tamamı 
tükenecektir. Böylece   maksimum 10 birimdir.  

1 23 8 3= / x2

2

x

2
x

2

1 1

x2

2 2 y1 1 1> 2
x2 x2

  III uygun taban çözüm : Burada    ve x  elde edilir. x  üretiminin sıfırdan 
10 birime çıkarılması sonucunda  x in üretimi 140/3 birimden 40 birime düşer. Net düşüş 20/3 birim 
veya  ‘nin her ünitesi için 2/3 birimdir. Eğer  üretimi 10 dan 20 birime çıkarılırsa üretimi de 
40 dan 30 birime düşer, net  düşüş 10 birimdir. Bunun sebebi  den 10 birim üretildiği zaman A 
malzemesinin tamamı kullanılmış olur, ilave bir birim  x  üretmek için lazım olan A malzemesini 
elde etmenin tek yolu üretimini tam bir birim düşürmektir. Onun için teknik açıdan uygun olmasına 
rağmen ’in birim kârı den  yüksek olmasına rağmen   üretimini düşürerek yapılan 10 birimlik 
ilave   üretimi uygun görülmez. Simpleks kuralları bu tip hataları önleyici niteliktedir.  

x x1 240 10= =  

x2

3 20=

x2

2

x1

2

1
x2

x2

x1

x1
x1 x2

     x  ‘ün 1 birim arttırılması halinde inde 2 birim  arttırılması  ‘nin 3 birim azaltılması ve x  
‘ün     4 birim arttırılması gerektiğini gösterir. Daha açık bir ifade ile x  ve  A ve B nin 
kullanılmayan miktarlarını gösteriyordu. A kaynağından bir birimin  kullanılmadan kalmasını 
istediğimizi varsayalım. Bu ancak   üretiminin 3 birim azalmasına B kaynağından da 4 birim 
kalmasına razı olursak gerçekleşebilir. Başka bir ifade ile   üretimini 3 birim azalttığımız zaman bu 
durumda üretim işleminde A, B ve C kaynaklarının sırasıyla 2, 6 ve 6 birimi kullanılacak , geriye 
kalan 1 birim A ve 4 birim B malzemesi kalacaktır. 

y3

→

3 x1 x2 4

3 x4

x2
x2
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   Yukardaki amaç A malzemesinden 1 birimin kullanılmadan kalmasının sağlanıp sağlanamayacağı 
idi. Niçin  üretimini bir birim azaltmakla bu amaca ulaşmıyoruz. Şüphesiz Bu hareket ilave bir 
birim A malzemesini kullanılmadan bırakacaktır. 

x1

   Diğer taraftan önceki analizde amaç A malzemesinin bir birimini kullanılmadan bırakmak için ne 
yapılmasının gerektiğini araştırmaktan bir dereceye kadar daha karmaşıktır. Yukarda yaptığımız 
işlemde asıl sebep üçüncü çözümün düzeltilip düzeltilmeyeceği idi. Onun için değerlendirilmek 
istenen herhangi yeni bir üretim planı temel olmayan  değişkeninin çözüm değerini 
değiştirmemelidir. Aksi halde yeni plan bir temel çözümü ifade etmeyecektir.  ‘i bir birim 
azaltırsak  ‘yi 1 birim arttırmalıyız ve bu durumda x  ve x  temele girecektir. Bunu problemin 
matematiksel formuna  şartını ilave ederek de gösterebiliriz ki çözülen başka bir problem 
olmuştur.  

x5

5

x1
x2 4

391 ≤x

     Son çözümün optimum olup olmadığını araştırmak için de temel olmayan x x  
değişkenlerine ait  leri incelemeliyiz ki bunlar  dir. Buna göre x  

‘ü bir birim arttırırsak net kâr 1 TL azalacaktır. Çünkü x  ‘ü 1 birim arttırmak için birim kârı 4 TL 
olan i 2 birim arttırmak  ve aynı zamanda birim kârı 2 TL olan x  ‘yi 3 birim azaltmak 
gerekecektir. . Aynı şekilde  eğer 1 birim arttılırsa net kâr 1TL azalacaktır. Neticede son çözüm 
optimumdur. 

ve3 5    

3jj cZ − 1   e  1 5533 == −− cZcZ v

3

2x1
x5

 
          Simpleks çözüm tekniğini anlattıktan sonra hem maksimizasyon hem de minimizasyon için 
geçerli olabilecek şekilde simpleks algoritmasını şöyle özetleyebiliriz. 

1-    Başlangıç temel programını belirle x B PB
→

−
→ →

= 1
0 β=

}

2-   matrisini ve Z c   miktarını hesapla  B G Y y j
−

→

= ′ = ′1 (   ,  ) j Jε j j− j Jε
3-   yi gözden geçir. Jj  ε,  jj cZ −

   a-Maksimizasyon problemi için her  için (  ise problem çözülmüştür. 
Hesaplama durur. 

Jjε 0) ≥− jj cZ

   b-Minimizasyon problemi için her  için (  ise problem çözülmüştür. Hesaplama 
durur. 

j Jε )Z cj j− ≤ 0

     Maksimizasyon problemi için  Z cj j− < 0
     Minimizasyon problemi için   Z c  j j− > 0
olan j indislerini  ile göster. *J

4- ,  gözden geçir. y j

→ * ε Jj

Eğer  için  yani bütün j  ler pozitif değilse sonlu sayıda bir maksimum (minimum) 
program yoktur. Hesaplama durur. 

* ε Jj y j

→ →

≤ 0 yρ

    Eğer değilse giriş kriteri 
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Min

y k

ββ
>

=
|

  den  l’ yi belirle  
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5-  a yerine  koymakla B den elde edilen B' temeli yardımıyla yeni  x  temel programı 

optimize edilecek fonksiyonun yeni 
k

→

a l

→

′
→

B

′Z değerini yeni  Y  ve  yeni  ( ’leri hesapla (3) üncü 
adıma git. 

′ )′ −z cj j

    Bu yazdığımız algoritmaya göre simpleks tablo çözümü aşağıdaki gibidir. 
 

CB

→

 

→

Bx  jc  4 3 0 0 0 

  
β
→

 
x1 x2  x3 x4  x5 

0 x3 50 1 1 1 0 0 
0 x4  80 1 2 0 1 0 
0 x5 140 3 2 0 0 1 
 Z j  

0 0 0 0 0 0 

 Z cj − j  - -4 -3 0 0 0 

 
0 x3 10/3 0 1/3 1 0 -1/3 
0 x4  100/3 0 4/3 0 1 -1/3 
4 x1 140/3 1 2/3 0 0 1/3 
 Z j  

560/3 4 8/3 0 0 4/3 

 Z cj − j  - 0 -1/3 0 0 4/3 

 
3 x2  10 0 1 3 0 -1 
0 x4  20 0 0 -4 1 1 
4 x1 40 1 0 -2 0 1 
 Z j  190 4 3 1 0 1 

 Z cj − j  - 0 0 1 0 1 
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