ON VALUE GROUPS AND RESIDUE FIELDS OF VALUED FUNCTION FIELDS

Figen ÖKE

Trakya Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü, EDİRNE Tel. 090-284-2352824
e-mail:fospo@hotmail.com
$\begin{array}{ll}\text { Received } & : 30.10 .2003 \\ \text { Accepted } & : 28.01 .2004\end{array}$

Abstract

In this paper studying on value groups and residue fields of valued rational function fields and valued function fields of conics is purposed. Let F be a function field over K ; v be a valuation on K ; w be an extension of v to $\mathrm{F} ; \mathrm{k}_{\mathrm{w}}, \mathrm{k}_{\mathrm{v}}$ and $\mathrm{G}_{\mathrm{w}}, \mathrm{G}_{\mathrm{v}}$ be residue fields and value groups of w and v respectively. If F is rational function field over K then either k_{w} / k_{v} is an algebraic extension or k_{w} is a simple transcendental extension of any finite extension of k_{v}. If F is a function field of conic over K and chark $\mathrm{v}_{\mathrm{v}} \neq 2$ then either k_{w} / k_{v} is an algebraic extension or k_{w} is a regular function field of conics over any finite extension of k_{v}. In the both case either G_{w} / G_{v} is a torsion group or there exists a subgroup G_{1} of G_{w} such that G_{1} / G_{v} is a torsion group and G_{w} is the direct sum of G_{1} and an infinite cyclic group.

Key words: Conics, extension of valuations, value group, valued function fields, residue field.

Değerlenmiş Fonksiyon Cisimlerinin Rezidü Cisimleri Ve Değer Grupları Hakkında

Özet: Bu çalışmada değerlenmiş rasyonel fonksiyon cisimlerinin ve değerlenmiş konik fonksiyon cisimlerinin değer gruplarının ve rezidü cisimlerinin incelenmesi amaçlanmıştır. F, K cismi üzerinde bir fonksiyon cismi; v, K cismi üzerinde bir değerlendirme; w , v nin F cismine bir genişlemesi; $\mathrm{G}_{\mathrm{w}}, \mathrm{G}_{\mathrm{v}}$ ve $\mathrm{k}_{\mathrm{w}}, \mathrm{k}_{\mathrm{v}}$ sırasıyla w ve v nin değer grupları ve rezidü cisimleri olsun. Eğer F, K cismi üzerinde bir rasyonel fonksiyon cismi ise $\mathrm{k}_{\mathrm{w}} / \mathrm{k}_{\mathrm{v}}$ ya bir cebirsel genişlemedir ya da k_{w}, k_{v} nin bir sonlu genişlemesinin bir basit transandant genişlemesidir. Eğer F, K cismi üzerinde bir konik fonksiyon cismi ise k_{w} / k_{v} ya bir cebirsel genişlemedir ya da k_{w}, k_{v} nin bir sonlu genişlemesi üzerinde bir regüler konik fonksiyon cismidir. Her iki durumda da G_{w} / G_{v} ya bir torsion gruptur ya da G_{1} / G_{v} bir torsion grup ve G_{w}, G_{1} ile sonsuz devirli bir grubun direkt toplamı olacak şekilde G_{w} nın bir G_{1} altgrubu vardır.

Anahtar kelimeler: Değer grubu, değerlendirmelerin genişlemeleri, değerlenmiş fonksiyon cisimleri, konikler, rezidü cismi.

Introduction

Let K be a field, v be a valuation on K . The old and important problem is finding all extensions of v to $K\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where $x_{1}, x_{2}, \ldots, x_{n}$ are indeterminates. This problem is solved completely for only $K(x)$. The other problem is describing residue fields and residue fields of $K\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for the valuation which is extension of v . In this paper there are some results on this problem.

Let $K(x)$ be a rational function field over K with valuation w which is extension of the valuation v. Let k_{v} and k_{w} be residue fields; G_{v} and G_{w} be value grups of v and w respectively. k_{w} / k_{v} is either an
algebraic extension or k_{w} a simple transcendental extension of any algebraic extension of $k_{v} . G_{w} / G_{v}$ is either torsion group or there exists a subgroup G_{1} of G_{w} such that $G_{v} \subseteq G_{1},\left[G_{1}: G_{v}\right]<\infty$ and G_{w} is direct sum of G_{1} and an infinite cyclic group.

Let F be a function field of a conic over a subfield K, v be a valuation on K with residue field k_{v} of characteristic $\neq 2$ and w be an extension of v to F having residue field k_{w}, G_{v} and G_{w} be value grups of v and w respectively. Either k_{w} is an algebraic extension of k_{v} or k_{w} is a regular function field of a conic over a finite extension of k_{v}. Either G_{w} / G_{v} is a torsion group or there exists a subgroup G_{1} of G_{w} containing G_{v} with $\left[\mathrm{G}_{1}: \mathrm{G}_{\mathrm{v}}\right]<\infty$ together with an element γ of G_{w} such that G_{w} is the direct sum of G_{1} and the cyclic group $Z \gamma$.

This facts are proved by J. Ohm, S.K. Khanduja and U. Garg in 1988,1991,1993,1994.

Preliminaries:

Let F / K be a finitely generated field extension. F / K is said to be a function field of a conic over K if the transcendence degree of F / K is one and if $F=K(x, y)$ where x and y satisfy an irreducible polynomial relation total degree 2 over K.
F / K is said to be a regular function field of a conic over K if
i) F / K is seperable extension i.e. either x is seperably algebraic over $K(y)$ or y is seperably algebraic over $K(x)$
ii) K is algebraic closed in F.

Throughout the paper if K is a field and v is a valuation on K then G_{v} and k_{v} will denote the value group and residue field of v respectively. For any η in the valuation ring of v, η^{*} will denote its v - residue i.e. the image of η in k_{v}.

If k_{v}^{\prime} algebraic closure of k_{v} in k_{w}, we shall denote by $I=\left[G_{w}: G_{v}\right], R=\left[k_{v}^{\prime}: k_{v}\right]$ and by D the henselian defect of the finite extension $(F, w) /\left(K(\xi), v^{\xi}\right)$ where v^{ξ} is the restriction of w to $K(\xi)$.

Results:

Theorem 1: Let v be a valuation of K with value group G_{v} and the residue field k_{v}. Let w be an extension of v to $K(x)$ with value group G_{w} and residue field k_{w} such that G_{w} / G_{v} is not a torsion group. Then there exists $\beta \in \bar{K}$ with minimal polynomial say $P(x)$ of degree n over K and $\theta \in G_{w}, \theta$ not torsion mod G_{v} such that if $f(x)=\sum_{i=0}^{r} f_{i}(x) P(x)^{i}$ is the canonical representation of $f(x) \in K[x]$ with respect o $P(x)$, one has

$$
w(f(x))=\min _{0 \leq i \leq r}\left(\bar{v}\left(f_{i}(\beta)\right)+i \theta\right)
$$

Then G_{w} is the direct sum of $G_{1}=v(K(\beta) \backslash\{0\})$ and an infinite cyclic group.
Proof: Let \bar{K} be an algebraic closure of K and \bar{w} be an extension of $w \bar{K}(x)$. Since G_{w} / G_{v} is not a torsion group, $G_{\bar{w}} / G_{v}$ satisfies the same property. So the subset M of \bar{K} defined by

$$
M=\left\{\alpha \in \bar{K} \mid \bar{w}(x-\alpha) \text { is not torsion } \bmod G_{v}\right\}
$$

is non-empty. Choose an element β of M so that $[K(\beta): K] \leq[K(\alpha): K]$ for all α in M.
We denote by $P(x)$ the minimal polynomial of β over K of degree n (say). Its roots $\beta=\beta_{1} \ldots, \beta_{n}$ are arranged such that $\bar{w}\left(x-\beta_{i}\right)$ is not torsion $\bmod G_{v}$ for $1 \leq i \leq m$ and $\bar{w}\left(x-\beta_{i}\right)$ is torsion $\bmod G_{v}$ for $m+1 \leq i \leq n$. We define μ and θ by

$$
\mu=\bar{w}(x-\beta), \quad \theta=w(P(x))
$$

Observe that for any element α of $M, \bar{w}(x-\alpha)$ must be μ; for $\bar{w}(x-\beta)$ cannot be equal to $\bar{w}\left(x-\beta_{i}\right)$ which is torsion $\bmod G_{v}$ and hence by the strong triangle law

$$
\begin{equation*}
\bar{w}(x-\alpha)=\min (\bar{w}(x-\beta), \bar{w}(\beta-\alpha))=\bar{w}(x-\beta) \tag{1}
\end{equation*}
$$

A similar argument yield that if $\delta \in \bar{K} \backslash M$, then

$$
\begin{equation*}
\bar{w}(x-\delta)=\bar{w}(\beta-\delta)<\mu \tag{2}
\end{equation*}
$$

Using (1) and (2), it is immediately verified that

$$
\begin{equation*}
\theta=\overline{\mathrm{w}}(\mathrm{P}(\mathrm{x}))=\sum_{\mathrm{i}=1}^{\mathrm{n}} \overline{\mathrm{w}}\left(\mathrm{x}-\beta_{\mathrm{i}}\right)=\mathrm{m} \mu+\sum_{\mathrm{i}=\mathrm{m}+1}^{\mathrm{n}} \overline{\mathrm{v}}\left(\beta-\beta_{\mathrm{i}}\right), \tag{3}
\end{equation*}
$$

which shows that θ is not torsion $\bmod G_{v}$.
We next show that if $h(x)$ is a non-zero polynomial over K, none of whose roots lies in M, then

$$
\begin{equation*}
\bar{w}((h(x) / h(\beta))-1)>0 \tag{4}
\end{equation*}
$$

For this write $h(x)=a \prod\left(x-\delta_{i}\right)$ as a product of linear factors over \bar{K}. By hypothesis $\delta_{i} \notin M$, so by (2)

$$
\bar{w}\left(x-\delta_{i}\right)=\bar{w}\left(\beta-\delta_{i}\right)<\mu
$$

Consequently

$$
\bar{w}\left(\frac{x-\delta_{i}}{\beta-\delta_{i}}-1\right)=\bar{w}\left(\frac{x-\beta}{\beta-\delta_{i}}\right)=\mu-\bar{w}\left(\beta-\delta_{i}\right)>0
$$

which shows that the \bar{w}-residues of $\left(x-\delta_{i}\right) /\left(\beta-\delta_{i}\right)$ and 1 are the same on taking product over i, one concludes that (4) holds.

An immediate consequence of the assertion proved above is that if all irreducible factors of a non-zero polynomial $h(x)$ of $K[x]$ are of degree less than n, then $\bar{w}((h(x) / h(\beta))-1)>0$, in particular

$$
\begin{equation*}
w(h(x))=\bar{v}(h(\beta)) \tag{5}
\end{equation*}
$$

We now prove (a) and (b). Let $\mathrm{f}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{r}} \mathrm{f}_{\mathrm{i}}(\mathrm{x}) \mathrm{P}(\mathrm{x})^{\mathrm{i}}$ be the canonical representation of a non-zero polynomial $f(x)$ with respect to $P(x)$. Since deg $f(x)<n$, by (5) $w\left(f_{i}(x)\right)=\bar{v}\left(f_{i}(\beta)\right)$ holds for each i. So the triangle law gives

$$
\begin{equation*}
w(f(x)) \geq \min _{0 \leq i \leq r}\left(w\left(f_{i}(x) p(x)^{i}\right)\right)=\min _{i}\left(\bar{v}\left(f_{i}(\beta)+i \theta\right)\right. \tag{6}
\end{equation*}
$$

It is to be shown that equality holds in (6). Suppose that strict inequality holds, then the minimum in (6) is attained for at least two subscripts i an j, which implies that a non-zero integral multiple of θ is free mod G_{0} proved in (3).

Let K be a field, v be a valuation on K, w be an extension of v to $K(x)$ and W be valuation ring of we whall define that \quad We $=\left\{\xi \in W \mid \xi^{*}\right.$ trans $\left./ k_{v}\right\} \quad$ and $\min S=\{\eta \in S \mid \operatorname{deg} \eta \leq \operatorname{deg} \xi$ for all $\xi \in S\}$.

Theorem 2: k_{w} is not algebraic over k_{v} and let $\xi \in \min$ S. Then $k_{w}=k_{v}^{\prime}\left(\xi^{*}\right)$, where k_{v}^{\prime} is the algebraic closure of k_{v} in k_{w}.

Proof: The inclusion \supseteq is immediate, so it remains to show \subseteq. By [5, Lemma 3.1] we may assume $\xi=f / g$, where $\operatorname{deg} f=n>\operatorname{deg} g$. For any $\xi \in V$, we may write, by [5, Lemma3.2],

$$
\xi=\left(a_{m} \xi^{m}+a_{m-1} \xi^{m-1}+\ldots+a_{0}\right) /\left(b_{m} \xi^{m}+b_{m-1} \xi^{m-1}+\ldots+b_{0}\right)
$$

where a_{i}, b_{i} are elements of $K[x]$ which are either of $\operatorname{deg}<n$ or are 0 . Let d be an element of least value from among $\left\{a_{i}, b_{i} \mid i=0, \ldots, m\right\}$, and let $\alpha_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} / \mathrm{d}, \beta_{\mathrm{i}}=\mathrm{b}_{\mathrm{i}} / \mathrm{d}$.

Then

$$
\xi=\left(a_{m} \xi^{m}+a_{m-1} \xi^{m-1}+\ldots+a_{0}\right) /\left(\beta_{m} \xi^{m}+\beta_{m-1} \xi^{m-1}+\ldots+\beta_{0}\right)
$$

where now the coefficients α_{i}, β_{i} are elements of $K(x)$ which are either of $\operatorname{deg}<n$ or are 0 . Moreover, $v\left(\alpha_{i}\right), v\left(\beta_{i}\right), i=0, \ldots, m$, are all ≥ 0. We may therefore consider the equality

$$
\left(\beta_{m}^{*} \xi^{* m}+\ldots+\beta_{0}^{*}\right) \xi^{*}=\alpha_{m}^{*} \xi^{* m}+\ldots+\alpha_{0}^{*}
$$

Since $\xi \in \min S$ and the α_{i}, β_{i} are either 0 or of $\operatorname{deg}<\operatorname{deg} \xi$, it follows that the β_{i}^{*} are all algebraic over k_{0}. But ξ^{*} is tr. over k_{0} and we know some α_{i}^{*} or β_{i}^{*} is 1 , some β_{i}^{*} must be $\neq 0$. Therefore $\beta_{m}^{*} \xi^{* m}+\ldots+\beta_{0}^{*} \neq 0$, and hence

$$
\xi^{*}=\left(\alpha_{m}^{*} \xi^{* m}+\ldots+\alpha_{0}^{*}\right) /\left(\beta_{m}^{*} \xi^{* m}+\ldots+\beta_{0}^{*}\right) \in k_{0}^{\prime}\left(\xi^{*}\right)
$$

Theorem 3: Let v be a valuation of a field K and w be an extension of v to an overfield $F=K(x, y)$ of transcendence degree one over K where $y^{2}=P(x)$ is in $K[x]$. If $G_{v} \subseteq G_{w}$ are the value groups of v and w then either G_{w} / G_{v} is a torsion group or there exists a subgroup G_{1} of G_{w} containing G_{v} with $\left[G_{1}: G_{v}\right]<\infty$ and an element γ of G_{w} such that G_{w} is the direct sum of G_{1} and the cyclic group $Z \gamma$ generated by γ.

Proof: Assume that G_{w} / G_{v} is not a torsion group. Let H denote the value group of the valuation w restricted to the subfield $K(x)$ of F. Then $\left[G_{w}: H\right]<[F: K(x)] \leq 2$, and H / G_{v} is not a torsion group. It is known that there exists an (explicitly constructible) subgroup H_{1} of H containing G_{v} with [$\left.H_{1}: G_{v}\right]<\infty$ and an element of θ of H such that H is the direct sum of H_{1} and $Z \theta$. [2.Corollary 1.2] So we assume that $\left[G_{w}: H\right]=2$.

Two cases are distinguished:
If $(\lambda+\vartheta) / 2=\theta_{1}$ belongs to G_{w} for some λ in H, then

$$
H=H_{1} \oplus Z \theta \subset H_{1} \oplus Z \theta_{1} \subseteq G_{w}
$$

and hence $G_{w}=H_{1} \oplus Z \theta_{1}$ in this case. Suppose that $\left(h_{1}+\theta\right) / 2 \notin G_{w}$ for any h_{1} in H_{1}. It will be shown that $G_{w}=\left(G_{w} \bigcap \frac{1}{2} H_{1}\right) \oplus Z \theta$ in this case. Let g be an element of G_{w}. Since $2 g \in H$, we can write

$$
g=\frac{h_{1}}{2}+\frac{n \theta}{2}
$$

for some h_{1} in H_{1} and some integer n. The claim is that n must be even. If n were odd, then on writing g as

$$
g=\frac{h_{1}+\theta}{2}+\frac{n-1}{2} \theta
$$

we derive that $\frac{h_{1}+\theta}{2} \in G_{w}$, contrar to the assumption.
Lemma 4: Let K be a field of $\operatorname{char} \neq 2$ and let F be a function field of a conic over K_{v}. Then there exist explicitly constructible elements $c-d \in K$ such that the K irreducible polynomial $\mathrm{x}^{2}-\mathrm{y}^{2}-\mathrm{d}$ is a defining polynominal for F / K_{v}. [3]

Theorem 5: Let F be a function field of a conic over a field K Let v be a valuation of K and w be an extension of v to F. Assume that $\operatorname{chark}_{v} \neq 2$. Then the residue field k_{w} of w is either an algebraic extension of k_{v} or k_{w} is a regular function field of a conic over a finite extension of k_{v}.

Proof : We may assume that k_{w} / k_{v} is not an algebraic extension. In view of Lemma 4, we may write $F=K(x, y)$ where (x, y) satisfies an irreducible polynomial $X^{2}-c Y^{2}-d$ over K. Observe that y is transcendental over K and that $[F: K(y)] \leq 2$. We denote by v_{1}, the valuation w restricted to $K(y)$ and by k_{1}, G_{1} the residue field and the value group of v_{1}. Then $\left[k_{w}: k_{1}\right] \leq 2$ and k_{w} / k_{1} is not an algebraic extension.

When $\mathrm{k}_{\mathrm{w}}=\mathrm{k}_{1}$, the desired result follows from the Theorem 2 applied to the simple transcendental extension $K(y) / K$ and the observation that a simple transcendental extension $L(t)$ of a field L is the regular function field of a conic over L which can be visualized by writing $L(t)$ as $L(t, 1 / t)$ where $(t, 1 / t)$ satisfies $X Y-1=0$.

Assume now that $\left[k_{w}: k_{1}\right]=2$. Let Δ^{\prime}, Δ denote the algebraic closures of k_{v} in k_{1} and k_{w} respectively. By the Theorem 2; k_{1} is a simple transcendental extension of Δ^{\prime} and Δ^{\prime} is a finite extension of k_{v}. If $\Delta^{\prime} \subseteq \Delta$, then

$$
k_{1}=\Delta^{\prime}(t) \subseteq \Delta(t) \subseteq k_{w}
$$

In view of te assumption that $\left[k_{w}: k_{1}\right]=2$, it is now clear that in the present case

$$
\left[\Delta: \Delta^{\prime}\right]=2 \text { and } k_{w}=\Delta(t)
$$

The theorem remains to be proved when $\Delta^{\prime}=\Delta$ and $\left[k_{w}: k_{1}\right]=2$. Since

$$
\begin{equation*}
[F: K(y)]=\left[k_{w}: k_{1}\right]=2 \tag{7}
\end{equation*}
$$

it follows from the fundamental inequality (cf. [1, Chapter 6, §8.3, Theorem 1 (b)]) relating the degree of extension with the ramification indices and residual degrees that the value group of w is G_{1}; in particular $w(x) \in G_{1}$. By [3,Lemma 2.2], there exists a non-zero polynomial $R(y) \in K[y]$ of degree less than $E=E\left(v_{1} / v\right)$ such that $w(x)=v_{1}(R(y))$. Set

$$
T=x / R(y) \text { and } \eta=\left(c y^{2}+d\right) / R(y)^{2}
$$

Since $x^{2}-c y^{2}-d=0$, the v-residue T^{*} of T satisfies the polynomial $X^{*}-\eta^{*}$ over k_{1}. In view of (7) and the fundamental inequality referred to above, w is the only extension to $F=(y, T)$ of the valuation v^{\prime} defined on $K(y)$. Recall that char $k_{1} \neq 2$; it now follows from [3,Lemma 2.4] applied to the extension $F / K(y)$ that $T^{*}=\sqrt{\eta^{*}}$ is not in k_{1}. Since k_{1} contains Δ^{\prime} which equals the algebraic closure of Δ^{\prime} in k_{w}, we conclude that T^{*} and hence η^{*} is transcendental over Δ^{\prime}. Therefore $k_{w}=k_{1}=\left(\sqrt{\eta^{*}}\right)$ is proved to be a function field and hence a regular function field of a conic over $\Delta^{\prime}=\Delta$, as soon as we show that there exists a generator u of the simple transcendental extension k_{1} / Δ^{\prime} such that η^{*} is a polynomial in u of degree ≤ 2 with coefficients from Δ^{\prime}. By [3,Lemma 2.3], η^{*} is itself a generator, say u, of the simple transcendental extension k_{1} / Δ^{\prime}. if $\operatorname{deg}\left(c y^{2}+d\right) \leq E$; in fact in this situation $k_{w}=\Delta^{\prime}\left(\sqrt{\eta^{*}}\right)$ is a simple transcendental extension of Δ^{\prime}. The remaining case is when $E=1$, i.e., when there exist $a, b \in K$ such that $((y-a) / b)^{*}=u$ (say) is transcendental over k_{v}. In this case the polynomial $R(y)$ being of degree less than $E=1$, must be a constant say R. Therefore on writing $\eta=\left(c y^{2}+d\right) / R^{2}$ as a polynomial in $(y-a) / b$, we conclude that η^{*} is a polynomial of degree ≤ 2 in u over k_{v}. Then the theorem is completely proved.

Theorem 6: Let v be a valuation of a field K with residue field k_{v} of char $\neq 2$ and let w be an extension of v to an overfield $F=K(x, \sqrt{P(x))}, \quad P(x)$ being a non-constant poylnomial in an indeterminate x over K. Assume that the residue field k_{w} of w is not algebraic over. Let's denote by D the henselian defect of the finite extension $(F, w) /\left(K(\xi), \nu^{\xi}\right)$ where v^{ξ} is the restriction of w to $K(\xi)$, ξ is a element of the valuation ring of w such that ξ^{*} trans $/ k_{v}$.

Then one can determine (by an explicit algorithm) an element u transcendental over k_{v} and a polynomial $A(u)$ over the algebraic closure Δ of k_{v} in k_{w} with $\operatorname{deg} A(u) \leq \delta+(\operatorname{deg} P(x)) / I R D$ such that $k_{w}=\Delta(u, \sqrt{A(u))}$ where $\delta=0$ or 2 ; indeed δ can be chosen to be 0 when $I=1$.

Proof : We write $F=K(x, y)$, where $y^{2}=P(x) \in K[x] \backslash \mathrm{K}$. We denote by v^{\prime} the valuation w restricted to $K(x)$ and by $k_{v^{\prime}}, G_{v^{\prime}}$ the residue field and the value group of v^{\prime}. Then $\left[k_{w}: k_{v^{\prime}}\right] \leq[F: K(x)] \leq 2$, and $k_{v^{\prime}} / k_{v}$ is a non-algebraic extension as k_{w} / k_{v} is given to be so. By the Theorem 2, $k_{v^{\prime}}$ is a simple tr. extension of a finite extension Δ^{\prime} of k_{0}. Throughout the proof, t will stand for the particular generator of $k_{v^{\prime}} / \Delta^{\prime}$ described in the opening lines of the proof of [4 Lemma 3.2.]. If $k_{w}=k_{v^{\prime}}$,
the theorem needs no proof. From now on, it is assumed that $\left[k_{w}: k_{v^{\prime}}\right]=2$ and that $\Delta^{\prime}=\Delta$, for $\Delta^{\prime} \subseteq \Delta$ yields $k_{w}=\Delta(t)$.

Since

$$
\begin{equation*}
[F: K(x)]=\left[k_{w}: k_{v^{\prime}}\right] \tag{8}
\end{equation*}
$$

it follows from the fundamental inequality [1 The 1 b] that the value group of w is $G_{v^{\prime}}$; in particular
 degree $<E^{\prime}=E^{\prime}\left(v^{\prime} / v_{0}\right)$ such that $w(y)=v^{\prime}(h(x))$; in the case $G_{w}=G_{v}$, we choose $h(x)$ of degree 0 . Set

$$
z=y / h(x), \eta=P(x) / h(x)^{2}
$$

Then $z^{2}=\eta$ and $v^{\prime}(\eta)=0$. In view of (1) and the fundamental inequality [3,§ 8.3,Theo. 2(b)], w is the only extension to $F=K(x, z)$ of the valuation v^{\prime} defined on $K(x)$. It follows from [4,Lemma 3.4] applied to the extension $F / K(x)$ that $z^{*}=\sqrt{\eta^{*}}$ is not in $k_{v^{\prime}}$. Keeping in view the assumptions $\left[k_{w}: k_{v^{\prime}}\right]=2$ and $\Delta=\Delta^{\prime}$, it is now clear that

$$
k_{w}=k_{v^{\prime}}\left(\sqrt{\eta^{*}}\right)=\Delta\left(t, \sqrt{\eta^{*}}\right)
$$

Recall that $\eta=P(x) / h(x)^{2}$, where $\operatorname{deg} h(x)^{2} \leq 2 E^{\prime}-2$; in fact $\operatorname{deg} h(x)^{2}=0$ if $G_{w}=G_{v}$. By [4,Lemma 3.2]. $\eta^{*}=B(t) / C(t)$ with $B(t), C(t)$ in $\Delta[t]$ satisfying $\operatorname{deg} B(t) \leq(\operatorname{deg} P) / E^{\prime}$ and $\operatorname{deg} C(t) \leq 1$. Further by [4,Remark 3.3], the polynomial $C(t)$ may be chosen to be of degree 0 when $G=G_{0}$.

Let us assume the inepuality $E^{\prime} \geq I R D$ to be proved below.
If $\operatorname{deg} C(t)=1$, on taking $u=C(t)$ and writing the polynomial $B(t)$ as $B_{1}(u)$, we see that

$$
k_{w}=\Delta\left(u, \sqrt{B_{1}(u) / u}\right)=\Delta(u, \sqrt{u B(u)})
$$

as desired, for $\operatorname{deg} B_{1}(u)=\operatorname{deg} B(t) \leq(\operatorname{deg} P) / I R D$.
In case $\operatorname{deg} C(t)=0$, say $C(t)=C \in \Delta$, then the theorem is proved on taking $u=t$ and $A(u)=B(t) / C$.

It only remains to verify the inequality $E^{\prime} \geq I R D$ with the assumptions $\Delta=\Delta^{\prime}$ and $[F: K(x)]=\left[k_{w}: k_{v^{\prime}}\right]$. The latter implies that $G_{w}=G_{v^{\prime}}$ and that the henselian defect of the extension $(F, w) /\left(K(x), v^{\prime}\right)$ is 1 . Fix any element ξ of $K(x)$ with $v^{\prime}(\xi)=0$ and ξ^{*} tr. over k_{v}. Since the henselian defect is multuplicative, it follows that

$$
D=\operatorname{def}^{h}(F / K(x)) \operatorname{def}^{h}(K(x) / K(\xi))=\operatorname{def}^{h}(K(x) / K(\xi))
$$

Thus D equals the number $D^{\prime}=\operatorname{def}^{h}(K(x) / K(\xi))$ and $E^{\prime} \geq\left[G_{v^{\prime}}: G_{v}\right]\left[\Delta^{\prime}: k_{v}\right] D^{\prime}$, as $G_{v^{\prime}}=G_{w}$ and $\Delta=\Delta^{\prime}$.

References

1 BOURBAKI N., Commutative Algebra, Hermann, 1972
2 KHANDUJA S.K., Value groups and simple transcendental extensions, Mathematika 38: 357-385, 1991
3 KHANDUJA S.K. and Garg U., Residue fields of valued function fields of conics, Proceedings of the Edinburgh Math. Soc. 36: 469-478, 1993

4 KHANDUJA S.K., On value groups and residue fields of some valued function fields, Proceedings of the Edinburgh Math. Soc. 37: 445-454, 1994

5 OHM J., The ruled residue theorem for simple transcendental extensions of valued fields, Proc. Amer. Math. Soc. 89: 16-18, 1983
6 OHM J., The Henselian defect for valued function field, Proc. Amer. Math. Soc. 107: 299-307, 1989
7 MATIGNON M. and OHM J., Simple transcendental extensions of valued fields III: The uniqueness property, J. Math., Kyoto Univ. 30: 347-365, 1990

