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There has been a lot of research into transportation. But most of this is focused on transportation network. This 
study investigates how containers are loaded as a part of transportation. For this reason, the shippers in which the 
products are allocated are very important. In order to minimize the sum of the transportation volume, a genetic 
algorithm approach has been exploited in this study. Random values example has been made up to generate a great 
size of example with respect to the real world values. As a result, it has been stated that the algorithm produces 
significant results. 
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DEPOLAMA IÇIN P A K E T BÜYÜKLÜĞÜNÜN BELİRLENMESİNE YÖNELİK BİR GENETİK 
ALGORİTMA YAKLAŞIMI 

Taşımacılık üzerine literatürde çok sayıda araştırma yapılmıştır. Ancak bu araştırmaların pek çoğu taşımacılık ağı 
odaklıdır. Bu çalışmada ise taşımacılıkta konteynırlara yüklemenin nasıl yapılacağı incelenmektedir. Bunun için 
ürünlerin yerleştirildiği, yüklemede kullanılacak paketler son derece önemlidir. Toplam taşıma hacmini asgari 
düzeye indirmek amacıyla genetik algortimalardan yararlanılmıştır. Büyük ölçekli olması için gerçek hayata uygun 
tesadüfi değerlerden bir örnek oluşturulmuştur. Sonuç olarak algoritmanın anlamlı sonuçlar ürettiği tespit edilmiştir. 

Anahtar Sözcükler: Taşımacılık, genetik algoritmalar, sevkiyat paketi, depolama. 
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INTRODUCTION 
As long as the cost of transportation is high, it is not 

enough to reduce the cost of the production. In addition 
to this, a very important element of the transportation 
costs is packaging. The ongoing drive to reduce 
packaging waste has led to an interest in the use of 
multi-trip containers or shippers. The usual practice 
with disposable containers is to use a bespoke carton for 
each product. However, in a multi-use system it is often 
necessary to reduce this to a relatively small number in 
order to maintain a manageable and cost effective 
logistics system for the containers themselves 
(Dowsland, 2005, 1). Thus, the right choice of shipper 
dimensions becomes very important. 

In this study, the right set of shippers is chosen by a 
genetic algorithm approach. The model has been based 
on the model which is developed by Dowsland, 
Soubeiga and Burke (2005). Total volume has been 
minimized depending on annual demands. In this 
manner, not only packaging waste would be reduced but 
also the number of containers or the size of containers 
would be reduced. Shintani, Imai, Nishimura and 
Papadimitriou (2007) proposed an integrated and 
genetic algorithm focused comprehensive approach 
which optimizes the transportation problem by 
designing the network. This study only deals with the 
storage of containers neglecting the design of network 
of transportation. Alicke (2002) investigated the 
intermodal terminal concept. In his study the terminal 
was modeled as a multi-stage transshipment problem. In 
his approach, sequence-dependent duration of empty 
moves, alternative assignments (of containers to cranes) 
and a sequence-dependent number of operations were 
handled. An optimization model based on Constraint 
Satisfaction was formulated and heuristics for the search 
procedure, especially value and variable ordering were 
developed. Although there are many studies for 
minimization of transportation costs problem, it is 
clearly seen that research on determining shipper sizes 
for storage are very rare. 

In this paper, a genetic algorithm approach is 
developed and it is used as optimization tool. Genetic 
algorithms (GA) were developed initially by Holland 
and his associates at University of Michigan in the 
1960s and 1970s, and the first full, systematic (and 
mainly theoretical) treatment was contained in 
Holland's book Adaptation in Natural and Artificial 
Systems published in 1975 (Reeves, 1995, 152). 

1. T H E P R O B L E M 

According to Dowsland, Soubeiga, and Burke 
(2005) the problem is stated as follows: The number of 
different products is denoted by n. Each product (i=1,n) 
has four characteristics of length, width, height and 

weight, denoted by xi, yi, zi, and wi respectively. Each 
product also has an expected annual sales volume in 
terms of number of units sold, denoted by bi. The 
objective, for a given integer p, is to find a set of p totes 
or shippers j(j=1, p) to be used for storage and/or 
distribution of the products. The dimensions of shipper j 
is represented by variable Xj, Yj and Zj. As explained 
previously, the problem is to minimize the total volume 
of shippers required. It is assumed that each individual 
shipper is filled with a single product (although shippers 
of a given set of dimensions may obviously be used for 
several different products). Thus, the optimization 
model for the problem is formed as: 

n m 

i=1 j=1 
m 

s . t S xy = 1 i = 1 n 

xj £ yj, i = 1, n, j = 1, m 
m 

S y j = P, p î N 

xy, yi Î (0,1) 

where xij = 1 i f product i is allocated to shipper j , xij 
= 0 otherwise, yj = 1 i f shipper j is used, y=0 otherwise, 

Vb 
fin JZL where V( = X( X Y( X Z( and 

fj is the number of units of product i that wil l fit into 
shipper j . It will be calculated as follows: 

(\ Z 
z i J 

X 
x i J 

X 
Y 
y i 

where Wmax is the maximum weight per shipper. In 
order to search solutions for great size of problems, Pjs 
are set randomly with respect to the real world values in 
this study. 

2. D E T E R M I N I G T H E POPULATION SIZE and 
T H E NUMBER OF GENES 

In this problem, it is tried to pick out the most 
appropriate p shippers from m shippers. This means the 

selection is made within ( m 1 alternatives. Thus, each 
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chromosome has p genes and each shipper is denoted by 
a gene. In order to give the chance of being selected to 
each of m shippers, all of them must take place in the 
initial population. Thus, the population size is calculated 

r m 1 
as 

p 

in this study. When m = 10 and p=10 the 

population wil l consist of 10 chromosomes. 
A subject that has attracted little attention is how to 

select the initial population. Usually, this is simply 
chosen by generating random chromosomes (Reeves, 
1995, 166). While setting up the initial population, each 
gene must have randomly unique values between 1 and 
m. In this manner, each shipper has a chance to take 
place in crossover operation. As the number of 
generations progressively increases, the genes which 
cause better fitness values wil l possibly repeat in current 
population. 

In order to avoid the possibility of having all the 
chromosomes same in any population of further 
generations - although genes can repeat - the uniqueness 
of each chromosome must be ensured. For example i f 
c 1 ={1, 3, 5, 2} and c2={4, 1, 6, 2} then c/s first gene is 
the same as c2's second gene and c/s last gene is the 
same as c/s last gene. However, these two 
chromosomes are not the same. 

As another example, i f it is assumed that m = 16, 
and p = 3 then the population size will be 6 and the 
initial population may be as follows: 

c1 = {2, 16, 3} c2 = {7, 12, 9} c3 = {11, 15, 1} 
c4 = {8, 13, 6} c5 = {5, 10, 14} c6 = {4, 2, 1} 

3. S E L E C T I O N MECHANISM 

In Holland's original GA, parents are selected by 
means of stochastic procedure from the population, and 
a complete new population of offsprings is generated 
and then these offsprings replaced with their parents. In 
another version, he suggested that each offspring should 
replace a randomly chosen member of the current 
population as it was generated (Reeves, 1995, 166). One 
simple method is the roulette wheel approach for 
selection mechanism. Each individual is assigned to a 
slot whose probability is proportional to the fitness of 
that individual, and the wheel is spun each time a parent 
is needed (Masters, 1993, 144). 

In this study a similar approach is applied: Since 
the problem is a minimization, the lesser an individual 
has fitness value, the more it should have possibility to 
be selected. In order to enable this, each individual's 
selection possibility (sk) is calculated as follows: 

a 
S f 
p=1 

sk =—a 

a 
S 
p=1 

LA 

fk > 0 and 

k = 1, a 

l=1 
f 

where a denotes the population size and equals to 

rm1 
fp denotes the fitness value of individual p in the 

current population. For example i f a = 3 and f = {10, 15, 
20} then sk will be calculated as follows. 

a 

S fp = 10 +15 + 20 = 45 

a 

a S f, 
S 

45 45 45 _ 
: — + — + — = 9.75 

p=1 fp 10 15 20 

45 

s = - 1 0 - = 0.46 s2 = 0.31 s3 = 0.23 
1 9.75 2 3 

4. FITNESS C A L C U L A T I O N 

It has been explained that each chromosome 
consists of shippers where products wil l be allocated to. 
Thus each gene is a shipper and product i will be 
allocated to the gene (shipper) within the current 
chromosome which has the minimum fij value. After 
allocating all the products to the most appropriate genes, 
the sum of fi (S wil l be fitness value for the current 
chromosome. The algorithm for fitness calculation of 
chromosome c1 is as follows: 

fitness = 0 
For each i , where i < n, and i £ N 
{ j = c1,1 

best = fij 
for each k, where k < p, and k > 1, and k £ N 
{ j = c1,k 

best = min{ best, iij} 
} 

fitness = fitness + best 

f 

} 

30 



5. C R O S S O V E R O P E R A T I O N 

After reproduction, each two of the parent strings in 
the mating pool are picked randomly and each pair of 
strings undergoes crossover with a probability. 
Crossover requires two individual chromosomes to 
exchange their genetic compositions. Thus, the 
offspring inherits some genes from parents via such 
operations (Jiao, 2007, 1787). 

Each individual chromosome is a set of shippers 
where the products wil l be allocated to. Thus, having a 
chromosome which has repeated genes is needless 
moreover it is false. As mentioned previously, it has 
been guaranteed that each chromosome has unique gene 
in initial population. Since the crossover operator 
produces new offsprings, in other words, new 
population, these offsprings must also be guaranteed 
that they have unique genes individually. 

Also i f one of the parents is fitter than the both 
offsprings, this parent must be put into new population. 
Unfit offsprings might cause next generations go worse. 

In this study, a single-point crossover operator is 
used. The cutting point is selected randomly between 2 
and p. The crossover algorithm is as follows. 

fi = a random number between 2 and p 
offspring1 = parent1 

offspring2 = parent2 

for each i, where i < f , and i > 0, and i £ N 
{ offspring3i = parent1i 

offspring4i = parent2i 

} 

for each i, where i > f, and i < p, and i £ N 
{ offspring3i = geneFromparent(offspring3, 

parent2, i) 
offspring4,i = geneFromparent(offspring4, 

parent1, i) 
} 
calculate fitness values for each offspring 
select the offspring which has the minimum fitness 

value and then put it into the new population 
Where f denotes cutting point. To guarantee that an 

offspring inherits unique genes from a parent, a function 
geneFromparent(offspring, parent, x) is developed and 
it is as follows. 

continue = 1 
k = x 
while continue is 1 
{ l = 1 

for each i, where i < x, and i > 0, and i £ N 
{ i f parent k mod p is equal to offspring i then l 

= 0 } 
i f l is 1 then the result is parent k mod p and 

continue = 0 

k = k + 1 
} 
For a small size of example it is assumed that p = 5, 

and parent1 = {3, 5, 11, 2, 4}, and parent2={1, 2, 10, 9, 
6}, and f = 3 then 

offspring1 = {3,_5, 11, 2, 4} offspring3 = {3, 5, 
10, 9, 6} 

offspring2 = { 1 , 2, 10, 9, 6} offspring4 = { 1 , 2, 
11, 4, 3} 

where the underlined genes are from parent1 and 
the others are from parent2 

6. MUTATION 

Mutation is an operator which is applied to each 
offspring individually after crossover. It randomly picks 
a gene within each string with a small probability 
(referred to as mutation rate) and alters the 
corresponding attribute level at random. This process 
enables a small amount of random search, and thus 
ensures that the GA search does not quickly converge at 
a local optimum. But it should not occur very often, 
otherwise the GA becomes a pure random search 
method (Jiao, 2007, 1788). Thus, in this study it only 
occurs with the possibility of ",2" and i f the current 
offspring, produced by crossover, is not unique. But 
what i f the mutation possibility does not come true 
nevertheless the offspring is unique? In this case the 
algorithm must keep trying crossover with new 
randomly selected parents for producing current 
offspring ti l l the offspring becomes unique or the 
mutation possibility comes true. 

When mutation occurs, a number of genes are 
randomly picked within current string. This number is 
called mutation point count in this study. It is calculated 

m 
as . The divisor 600 is obtained empirically. 

L 600 J 
This number wil l increase as the number of shippers 
increases and that becomes very beneficial in terms of 
computation time. Indeed, this number can not be higher 
than p. 

0 = mini max<̂  
m 

600 
1!, P} 

Produce vector X which has randomly selected 6 
mutation points 

v = 0 
for each i, where i > 0, and i < 6, and i £ N 
{ l = 1 

while l is 1 
{ v = random number between 1 and m 

l = 0 
j = Xi 
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for each k, where k > 0, and k < p, and k 4 j , 
and k £ N 

{ if offspringk is equal to v then l = 1 } 
offspringj = v 

} 

} 

I f m is 1300 and p = 5 and current offspring = {2, 
500, 109, 86, 850}, and 6 = 2, X = { 1 , 3} then the 
offspring can be {128, 500, 1208, 86, 850} where the 
underlined genes are changed after the mutation. 

7. T H E MAIN A L G O R I T H M 

r m 1 
a = 
Produce initial population c 
Calculate fitness values of each chromosome in c 
Set selection probabilities of each chromosome in c 
Set bestchromosome equal to chromosome most 

appropriate in c 
Set bestfitness and previousfitness equal to 

minimum fitness value in c 
unchangediterations = 0 
generation = 1 
While generation < 1000 
{ i = 1 

While i < a 
{ Select parent1 and parent2 from c with 

respect to selection probabilities 
Produce new offspring by crossover 

operator 
Set temporarypopulationi equal to the new 

offspring 
I f temporarypopulationi is not unique in 

temporarypopulation and randomly 
selected number < 0.2 then mutate 

temporarypopulationi 

I f temporarypopulationi is unique in 
temporarypopulation then i = i + 1 

} 
Copy the chromosomes from 

temporarypopulation to c 
Set selection probabilities of each chromosome 

in c 
I f previousfitness = minimum fitness value in c 

then 
unchangediterations = unchangediterations + 1 

else unchangediterations = 0 
I f unchangediterations = 100 then generation = 

1001 
Set previousfitness is equal to minimum fitness 

value in c 

I f bestfitness > minimum fitness value in c then 
bestfitness = minimum fitness value 

in c and set bestchromosome equal to chromosome 
most appropriate in c 

} 

I f the minimum fitness value does not change for 
100 generations one after the other, the algorithm wil l 
stop running for further searches. In this study 
maximum generation count is set to 1000. 

8. DISCUSSION 

The algorithm developed in this study is tested with 
a randomly created problem. The results of the GA are 
compared with that of Lingo4 software. Because of the 
software's constraints and variable capacity, in the test 
problem m, n, and p are set to 1332, 6, and 6 
respectively. As explained above, iij is produced 
randomly with respect to the real world values. This 
problem's solution space consists of 

(1332^ 1 5 

: 7,67 X10 alternatives. Thus, even i f any 

given test computer can experiment 100,000,000 
alternatives per second, the total search time of the 
solution space wil l be approximately 2.4 years. The 
lingo model to solve the problem is as follows: 

MODEL: 
SETS: 

SHIPPERS / 1..1332 / : Y; 
PRODUCTS / 1..6 / ; 
ALLOC(PRODUCTS, SHIPPERS) : X, P; 

ENDSETS 

DATA: 

1.3202413x10' 
2.076052x107, 

2.7458204x10, 
1.4766266x107 

1.8495946x107 

1.8574984x107 

ENDDATA 

M I N = @SUM(ALLOC: X * P); 
@FOR( PRODUCTS( I): @SUM( SHIPPERS( 

J): X( I , J)) = 1); 
@FOR(ALLOC(I, J): X( I , J) <= Y(J)); 
@SUM(SHIPPERS: Y) = 6; 
@FOR( ALLOC: @BIN(X)); 
@FOR( SHIPPERS: @BIN(Y)); 

END 

And the results are as follows: 
Optimal solution found at step: 348 
Objective value: 0.1426174x108 

Branch count: 0 
Variable Value Reduced Cost 

P 
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Y(183) 
Y( 262) 
Y(467) 
Y( 662) 
Y(1093) 
Y( 1196) 

X( 1, 183) 

1.000000 
1.000000 
1.000000 
1.000000 
1.000000 

1.000000 

1.000000 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

2500060. 

X( 2, 262) 1.000000 2782824. 
X( 3, 662) 1.000000 2301684. 
X( 4, 1093) 1.000000 2329361. 
X( 5, 1196) 1.000000 2257784. 
X( 6, 467) 1.000000 2090027. 
The GA solution for that problem is obtained in 

1.84 seconds on a Pentium IV 1.7. Figure 1 shows the 
minimum fitness values obtained in each generation. 

Figure 1. GA generations of the problem 

Table 1. GA solution for the problem 

PRODUCTS 
1 X 
2 X 
3 X 
4 X 
5 X 
6 X 
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Table 1 shows the GA solution for the problem. It 
is seen that Lingo4 software and GA produce the same 
solution. 

Although the determining the shipper sizes for 
storage problem is not identical with the 0-1 knapsack 
problem, they seem similar. The knapsack problem with 
n items is described by the knapsack of size b and three 
sets of variables related to the items: decision variables 
x1, x2, . . . , xn, positive weights W1,W2, . . . , Wn; and 
profits P1, P2, . . . , Pn; where, for each 1< i <n, xi is 
either 0 or 1. The Wi and Pi represent the weight and 
profit, as integers, of the ith item, respectively (Kumar 
ve Banerjee, 2006, 109). 

The knapsack problem formally can be stated as 
follows: 

n 

m a x S P i x i 
i=1 

s.t. SWiXi £ b 
i=1 
Xi Î {0,1} 

Having been adapted into the knapsack problem, 
this studies' algorithm is tested with the cases of 
weing1, weing2, weing3, weing4, weing5, weing6, 

weing7, weing8, pb4 and hp1 as well. The solutions of 
the adapted algorithm are the same as the known 
solutions of which the objective function values are 
141278, 130883, 95677, 119337, 98796, 130623, 
1095445, 624319, 95168 and 3418, respectively. The 
test data are obtained from 
http://people.brunel.ac.uk/~mastjib/jeb/orlib/files/mkna 
p2.txt. 

9. CONCLUSION 

The GA approach in this study produces significant 
results as tested above. The overall size of the test 
problem was 7,67><1015 because of Lingo4's capacity. 
But the performance must be examined with a much 
greater problem in size. For this reason, a problem 
where m = 105, p = 10, and n = 50 is simulated. Figure 
2 shows the progress of algorithm. It lasts 33,67 minutes 
on the same computer and it is acceptable for this kind 
of problems. Table 2 shows the solution. 

As the memory capacity on subject computer 
increases, which is 256MB currently, problems which 
have greater search spaces may be solved. But such size 
of a search space is assumed to be enough for a real 
world problem example. 

248000000 

238000000 

228000000 

218000000 

208000000 

198000000 

188000000 

178000000 

168000000 | 

158000000 

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 

Figure 2. GA generations of great size problem 
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Table 2. GA solution 
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1 X 

2 X 

3 X 

4 X 

5 X 

6 X 

7 X 
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9 X 

10 X 
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12 X 

13 X 

14 X 

15 X 

16 X 

17 X 

18 X 
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25 X 
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