

ISTANBUL UNIVERSITY ENGINEERING FACULTY
JOURNAL OF ELECTRICAL & ELECTRONICS

YEAR
VOLUME
NUMBER

: 2001
: 1
: 2

(193-200)

 DESIGNING AN OBJECT-ORIENTED APPLICATION MODEL
BY BOOCH METHODOLOGY

BOOCH METODOLOJÝSÝYLE NESNEYE YÖNELÝK BÝR
UYGULAMA MODELÝNÝN TASARLANMASI

Zerrin AYVAZ REÝS 1 Mithat UYSAL 2

1 University Of Istanbul, Educational Faculty Of Hasan Ali Yucel, Beyazit
2University Of Mimar Sinan, Department Of Enformatics, Findikli

1e-posta: ayvazzer@istanbul.edu.tr 2e-posta:muysal@msu.edu.tr

ABSTRACT

Basically, good structures have object-oriented tendency which does not mean all object-oriented
structures are good; on the other hand it does not mean that only object-oriented structures are good.
An application based on the principles of object-oriented selection may provide the appearance of
structures containing the characteristics of a complex system which has been organized. Sufficient
software structures have many common characteristics: They are formed from abstracted levels which
have been identified sufficiently. Every level having coherental & complete abstraction are possible
only with well-identified and controlled interfaces. These levels are constructed over the lower
abstraction levels which contain well-identified and controlled charecteristics.

There are many techniques to develop software for the object, one of which is Booch technique. Booch
is the technical definition for the object to improve the design and analyse a system. There are
different suggestions for Micro and Macro applications. Here, what we aim is to identify the steps to
put a succesful project into practice by means of Booch methodology and to present it.

Keywords: Object-Oriented Methodology, Object-Oriented design, Booch methodology, modelling,
software engineering.

ÖZET

Model, bir þeyin kurulmadan önce anlaþýlmasý amacýyla soyutlanmasýdýr. Modellere tüm ayrýntýlar
dahil edilmediði için üzerinde deðiþiklik yapýlmasý orjinalinden daha kolaydýr. Çalýþanlar gereksinim
duydukça bir tasarýmý gerçekleþtirmeden önce modeller yapmýþlardýr. Donaným ve yazýlým
sistemlerinin geliþtirilmesi de farklý deðildir. Karmaþýk sistemler kurmak için, sistemin farklý yönleri
soyutlanmalý, kesin bir gösterim kullanarak model oluþturulmalý, modelin sistemin gereklerini yerine
getirdiði doðrulanmalý ve yavaþ yavaþ detaylarý ekleyerek modelden uygulamaya geçiþ yapýlmalýdýr.

Temel olarak, iyi yapýlar nesne-tabanlý olma eðilimindedir. Bu, sadece yada bütün nesne-tabanlý
yapýlar iyidir demek deðildir. Nesne-tabanlý ayrýþtýrma prensiplerine dayalý bir uygulamanýn,

Designing An Object-Oriented Application Model By Booch Methodology

Zerrin AYVAZ REÝS, Mithat UYSAL

194
organize edilmiþ karmaþýk bir sistemin istenen özelliklerini içeren yapýlarýn ortaya çýkmasýný
saðlayacaðý söylenebilir.

Ýyi yazýlým yapýlarý genel olarak iyi tanýmlanmýþ soyutlama düzeylerinden oluþmuþtur. Bütünlük
taþýyan ve uyumlu bir soyutlamayý ifade eden her düzey, iyi tanýmlanmýþ ve kontollü ara yüzlerle
saðlanýr ve ayný þekilde iyi tanýmlanmýþ ve kontrollü özellikler içeren daha alt soyutlama seviyeleri
üzerine inºa edilir.

Nesneye yönelik yazýlým geliþtirilmesi konusunda pek çok yöntem vardýr, bunlardan biri de Booch
yöntemidir. Booch, bir sistemin analizi, tasarýmý ve geliþtirilmesi için nesneye yönelik yinelemeli bir
teknik tanýmlamaktadýr. Bu konuda Mikro ve Makro uygulamalar için ayrý önerileri vardýr. Bu
çalýþmada Booch metodolojisi ile baþarýlý bir projeyi ortaya koyabilmek için gereken adýmlarý
belirtip, bir mikro uygulama ile bunu sunmayý amaçladýk.

Anahtar sözcükler: Object-Oriented Metodoloji, Object-Oriented tasarým, Booch methodolojisi,
modelleme yazýlým mühendisliði.

1. INTRODUCTION
Developing a high quality software system is
driven by a software development methodology.
Different methods emphasize different aspects of
the software development process. A software
system consists of functions and data.
Traditional methods are function oriented and
divide the functions and the data. This approach
causes some bottlenecks during maintenance.
However object oriented methods integrates
these two elements of software, encapsulates
them and process them together.

2. MATERIAL AND METHOD

2.1. Modelling As A Design
Model is an abstraction of something before it is
installed or put into practice. Since all details are
not included it is easier for the model to be
changed than the original itself. Those, who have
had the need in a working environment, have
formed models before they have developed the
original design. The improvement of
software&hardware systems are not different at
all. To establish complex systems, differences in
the system should be abstracted, a model should
be made using a definite display, the fact that the
model realizes the needs of the system should be
confirmed, and by adding details gradually the
transfer from the model to application must be
done.

2.1.1.Modelling
Designers produce various models before they
construct their product for various purposes. For
example; architectural designs for the customers,

aircraft models having different scales for speed
tests, charcoal drawing for paintings, designs for
machine pieces; designs for advertisements and
books. They have different purposes.

Testing before constructing it physically:
Since ancient times people have formed models
to see the result of what he is doing in this field.
Recent developments in computer technology
have enabled many physical structures to be
simulated in computer before they are realized.

Simulation is not only cheaper, but provides
information , which can not be reached and has
short-life-span comparing to a real model. Both
physical models and computer models are
cheaper than constructing all the system and also
enables to find mistakes and correct them.

Communicating with customers:
Architects and product designers form models
for their customers. Copies are introductory
products copying all or partial characteristics of a
system.

Visualization:
Films, T.V. shows and commercials enable the
producers to see their ideas. Before a detailed
software begins irrelevant pieces, transition
which is not appropriate and the edges which are
not connected can be changed. Charcoal
drawings are for changing their ideas before they
transfer it on to stone or a frame.

Designing An Object-Oriented Application Model By Booch Methodology

 Zerrin AYVAZ REÝS, Mithat UYSAL

195
Reducing complexity:
The reason for modelling is the necessity of
working with complex systems which are very
difficult to understand directly human brain have
the capacity of fighting and overcoming which
limit information in a limited time. Models
reduce the complexity separating the necessary
limited thing for a moment.

2.1.1.1. Abstraction
Abstraction is investigation of particular points
of a problem. The main aim of the abstraction is
seperating the important points for a particular
purpose and suppress these which are not
important. Abstraction must have a purpose
because this purpose clarifies what is important
what is not. The same thing can have different
abstraction for different purposes.

All abstractions are incomplete or faulty. Words
or languages used are incomplete definitions of
the real world. But this does not change the
situation that they are useful. The purpose of
abstraction is the limitation of the universe to
realize something. For this reason we must look
for adequacy for the purpose not the pure reality.
There is not only one model for one situation, but
adequate or inadequate one.

A sufficient model holds the important facts for a
problem while ignoring the others. For example;
many of the computer languages are not
sufficient to be used for modelling algorithms;
because they need clasification for application
details which are not related to algorithm. A
model containing irrelevant details limits
choosing model designs and removes attention
from the real subject. There is not a correct way
for classification of abstractions and also for
constructing the structure of a definite system .
While designing the solution for a structure in a
field, sometimes clever methods, which have not
been thought of before, can be found. In
addition, how do we see the difference between a
good structures and a lead one.

Basically, good structures have object-oriented
tendency. This does not mean all object-oriented
structures are good but only object-oriented
structures are good. An application based on
object-oriented separation principles enables the
appearance of the structures containing the
characteristics of a complex system which has
been organized.

Good software structures have many common
characteristics: They consist of abstraction levels
which have been well-defined. Every level
having coherent and complete abstraction are
only provided by means of well-identified and
controlled interface and constructed lower levels
containing well-identified and controlled
charecteristics. It is a fact that, between the
interface and its application of the level without
destructing the suppositions by the users.

The structure is simple: General behaviours;
general abstractions and general mechanism
enable this. A distinction between strategical and
tactical decisions can be mentioned. A strategical
decision carries more general and formal
meanings and for this reason contains the
organisation of the structures which have higher
position. The mechanism of fault finding and
correcting; user’s interface paradigm, memory
administraction and object position politics,
approachs of process syncronisation in
application which are real-time strategical
structural decisions are meant.

On the contrary tactical decision means only
local structural decisions and generally contains
application and interface details.

2.1.1.2. Circular And Developing Life-
Cycle
Works enabling succesful object-oriented
structures have not only circular but developing
characteristics. This kind of work is circular that
means the revision of object-oriented structure
which is developing and advancing. The results
of previous drive and transfering the collected
experience to later analysis and design step are
the basis of this revision. The work’s showing a
continuous improvement in every move in
analysis, design and cyclic process enable a
solution; which supplies the real needs of the
end-user and development of strategical and
tactical decisions after controlling them, to occur.
This solution is also simple, reliable and
adaptable.

Cyclic and improving development process is the
anti-thesis of waterfall model and its explains
neither top, down or bottom-up style. According
to the circumstance both are applicable.

Experiences show that object-oriented
development is neither top-down nor bottom-up.
Instead, as pruke suggests, complex systems

Designing An Object-Oriented Application Model By Booch Methodology

 Zerrin AYVAZ REÝS, Mithat UYSAL

196
which have been well-structured is best-created
by using “round-trip-gestald design”. This design
style underlines cyclic and improving structure
for the system development. Doing this, the
important thing is that the reneval and
development of logical and physical appearances
of the system should be perceived as a whole.
Round-trip-gestald design is the basis of object-
oriented design.

For some limited application fields, the problem
which will be solved could have been defined
with various applications in this field. Here, it is
possible to code the improvement process as a
whole. A new system designers in such field
have already found out important abstractions,
which mechanism should be used and expected
move span for the system is generally known.
Creation is still important for a process like this.
But here, it is addressed to strategical decisions
of the system. In this cases, since the risk of the
improvement has already been eliminated, it is
possible to reach very high production
performance. The more we know about the
problem that will be solved, the easier it becomes
to solve it.

Industrial software problems are not always like
this. They mostly require a balance of authentic
set in which functional and performance needs
form, and maximum performance of the
developmemt team needs creativy.

All human activities basing on intelligence,
experience and team work, which needs
creativity require a cyclic and improving work.

2.2. Booch Methodology

This methodology approaches to software
improvement process from two different points.
These are ; Micro and Macro improvement
process.

2.2.1. Mýcro Improvement Process

Micro processes of object-oriented improvement
are defined by scenarios and structural products
produced by macro processes. That means micro
processes explain daily activities of an individual
and a small development team. Micro processes
software engineer is equal to software architect.
Micro processes from the point of view of the
engineer guide many decisions in the adaptation
of the structure and daily product. On the other

hand, from the architecture’s point of view it
forms a frame for the alternative designs and the
cycle of the structure.

In micro process, traditional analysis and design
phases are blurred, and processes are carried out
under an opportunist control (here substitution of
the necessary ones) As Stroustrup has observed,
there are not methods, prescriptions which will
take the place of a software project.

Micro process have this tendency;
1. Identification of the classes and objects in

the given abstraction level,
2. Identification of the semantics of this class

and objects,
3. Identification of the relations between this

class and objects,
4. Interface clarification of interface and

application of these classes to objects,

2.2.2. Macro Improvement Process

Macro improvement process serves as a working
frame which controls micro processes This
expended process shows some activities and the
number of the products then, can be measured.
These activities inform the values which have
been determined in case of risk to development
team. (punishment & application and also
informs the realization of approval of micro
improvement processes at early stopes to the
team) Macro improvement process shows the
actvities of the whole development field in a
week time scale in a month.

Many elements of macro process are experiments
of simple software administration of the system
which are not object-oriented and are object-
oriented. These simple experiments include
hardware administration, reliability of the
quality, walkthrough and documentation.

Macro process, different from individual
improvement team. Both are for supplying the
needs of the customer by means of a quality
software. Besides, end-users will have less
information about the events because of
polymorphic functions which have been clearly
explained, and parametric classes used by those
which have improved them.

For this reason, macro process is focused on risk
and architectural look. These two
elements,which can be administered, have the

Designing An Object-Oriented Application Model By Booch Methodology

 Zerrin AYVAZ REÝS, Mithat UYSAL

197
totality and quality that are the most effective
points.

In macro process, analysis and traditional phases
of the design are processes which have been
well-classified and long-lasting in order to
protect extra expansion. Macro processes are
activities lined below

1) Providing the basic needs for the software

(Conceptualization)
2) Developing behaviour tendency model for

the system (Analysis)
3) Forming the architect for development

(Design)
4) Development cycle of the details from one

end to the other (Development)
5) Network admininstration for post

development (Maintenance)

2.3. What Are The Development
Steps For Booch Methodology
Booch Methodology is a technical definition for
the analysis, design and development of a
system. It has different suggestions for macro&
micro applications.

Steps of macro application developments
1) Understanding the concepts- Clarifying the

needs and placing them.
2) Analysis development method.
3) Creation of design architecture.
4) Adding value and realizing it.
5) Maintenance

Steps of micro developing process
1) Defining objects classes.
2) Defining the logic objects& classes.
3)Defining the relations between objects&
classes.
4) Improving objects&classes.

Here we are going to illustrate the methodologies
that have been investigated before. For this
reason we have chosen a simple problem which
is well-known in academic circle.

2.4. Case Study

Problem
A programme including grades of the students of
a vocational high school having several
departments, the results, after some required
calculations by the system have been done,

showing the success of the student,and also if
desired this programme can also inform the
teacher & student about the results, personal
information such as military service(postponing
it during university education), school
fee,environment information e.t.c. When we
apply the suggestions for developing and
recurrent object-oriented tecnique by Booch
Methodology , we see six different diagrams
developed in the methodology for this reason.

(Class Diagram),

SIS

Illustration-1 : The identification symbol of
Class in Booch Methodologie.

Class identification is realized with the symbol
shown above in Booch Methodologie. We have
already named our problem subject as SIS-
Student Information System.

in the booch methodologie;
Symbol showing class relations are below

 association

 inheritance

 has

 using

relationship adornments;
role
[key]
{constraint}
 attributed class

containment adornments;

 by value

 by reference
 are seen..

Object Diagram;
The diagrams showing the relations between the
classes and their definitions. If we give examples

Designing An Object-Oriented Application Model By Booch Methodology

 Zerrin AYVAZ REÝS, Mithat UYSAL

198

label cardinality

role

A D M I N I S T R A T I V E
P E R S O N E LT a k e l i s t ()

A C A D E M I C P E R S O N E L

E n t e r n o t e ()

S T U D E N T

n a m e : s t r i n g
s u r n a m e : s t r i n g

n o : i n t
P E R S O N A L

i d : s t r i n g
N a m e - s u r n a m e :
s t r i n gt a s k : s t r i n g

u s e r

n

U S E R

p a s s w o r d : s t r i n g
u s e r c o d e : s t r i n g

1

S E C U R I T Y

a p p r o v a l ()

nF

1

S U P E R U S E R

G i v e s
a u t o r i t h y ()

Illustration-2 : Class relation in Booch Methodologie.

SCENARIO : IDENTIFICATION of
USER
PRECONDITION: User must have the
responsibility to do this. (Superuser /
Administrator)

* Superuser opens security system from
the "programme".
* Chooses "New user identification”
chart.
* Screen for new user identification
opens.
* User’s name-surname are coded.
* Key word is given to the user.
* The kind of responsibility.

i. Student,
ii. Academic personal,
iii. Administrative personal,
iv. Administrator approves.

* Confirms Superuser processes.
The diagram .below has been prepared for the
scenario given above;

Interaction Diagram;
Diagrams showing how object classes influence
each other. These classes are produced from the
scenarios providing the solution according to the
problem..

Designing An Object-Oriented Application Model By Booch Methodology

 Zerrin AYVAZ REÝS, Mithat UYSAL

199
SECURITY
SYSTEM

USERSIS
S

SUPERUSER
M

security
sisteminiaç aç

openl

aproval

Security system opened

Identifie New user
tanýmla

Give new usew chart

new usew chart

New user

New user screen opened

user: name, surname, password,capacity

approval

Record to database
kaydet

Illustration-3 : Interaction Diagram in Booch Methodologie.

Module Diagram; llustration of objects and classes of the defined system in general use with modular
symbols. Symbols used are shown below.

 SIS SUBSYSTEM

BROWSE INFO

Illustration-4 : Modular Diagram in Booch Methodologie.

Process Diagram;
Process Symbols used are shown below.

PROCESSOR

Intel pentium
486 and plus

TOOL

 Win’95,
 Win NT

Illustration-5 : Process symbols in Booch
Methodologie.

Shows placement of the process to the precessor
which are physical appearences of the symbol.

State Diagram;

State diagrams are given with scenarios and they
show statement transition between each other.
The example for state diagram below has been
given for the scenario before.

Designing An Object-Oriented Application Model By Booch Methodology

 Zerrin AYVAZ REÝS, Mithat UYSAL

200

SUPERUSER SIS

SECURITY
SYSTEM

USER

 / open

 / security system opened

approval

Screen new user

 Identifie new user screen

open security system

Identifie new user

User identifie:(name,surname,password,..

Record to database

New user

approval

Illustration-6 : State Diagram in Booch Methodologie.

3. CONCLUSION
This case study is limited, so it can be progressed
to compare different topics and developed other
methodologies.

4. REFERENCES

[1] Brocks F., “The Mythical Man-Month”,
Addison-Wesley, 42, 1975

[2] Stroustrup B.; “The C+ Programming
Language”, Addison-Wesley, 362, 373, 1991

[3] Jones C, “Reuseability in Programming: A
Survey of the State of The Art”, IEEE

Transaction on Software Engineering. Vol. SE-
10(5), September-1984

[4] Humprey W.; “Managing The Software
Process”, Addison-Wesley, 5, 1989

[5] Parnas D., Clements P.;”A Rational Design
Process; How and Why to Fake It”. IEEE
Transactions on Software Engineering. Vol. SE-
12(2), 1986

[6] Boehm B., “A Spiral Model of Software
Development and Enhancement. Software
Engineering Notes”, vol.11(4), .22, August 1986

 [7] Booch G.;” Object-Oriented Analysis and
Design”, The Benjamin/Cummings, 236, 1994

