

ISTANBUL UNIVERSITY –
JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING

YEAR
VOLUME
NUMBER

: 2003
: 3
: 1

(719-726)

Received Date : 25.09.2002
Accepted Date: 25.12.2002

MODULAR AND HIERARCHICAL SPECIALIZATION
IN NEURAL NETWORKS

A.J.W.M. ten BERG1,2 and L. SPAANENBURG1

1 Lund University, Department of Information Technology, P.O. Box 118, S-22100 Lund, Sweden.
 Email: lspaanenburg@ieee.org , Tel: +46-46-22 24931, Fax: +46-46-22 24714

2 currently with Philips Research Laboratories, Eindhoven, The Netherlands

ABSTRACT

Modularity and hierarchy are fundamental notions in structured system design. By subdividing a
large and unstructured problem into smaller and tractable chunks, design automation becomes
possible. In this paper we discuss the use of modularity and hierarchy for functional specialization
during the development of neural networks. We study the behavioral differences and requirements for
back-propagation training of feed-forward networks. Further we illustrate that a deliberate mix of
hierarchically imposed evaluation functions will improve network accuracy and learning speed.

Keywords: Neural Networks, Modularity, Hierarchy, Structure Transformation, Function
Specialization

I. INTRODUCTION
Compositional techniques are at the fundament
of any complex design task. Where complex
neural networks are plagued by learning
problems, composition styles can help to
increase the capacity and accuracy of neural
networks 0, 0. Though providing better
performance, the fundamental difficulty in
network training 0 remains a major concern and
several studies have been made for solutions to
this problem 0, 0. Typically, literature defines
three categories of compositions of a neural

network [1]; ensembles, modules and
hierarchies.

Ensembles consist of a set of autonomous
networks in which each network solves the
complete problem. Data engineering typically
derives the individual networks. By applying
different subsets of the training set to the
different networks in the ensemble, they
generalize in different ways. A voting
mechanism then reaches a final, overall decision:
a mechanism well known in other engineering
disciplines as well. This improves accuracy and
robustness.

mailto:lspaanenburg@ieee.org

Modular And Hierarchical Specialization In Neural Networks

720

A.J.W.M. ten Berg, L. Spaanenburg

Figure 1. Some neural network types.

Modular networks typically consist of a network
of interconnected neural networks 0 or modules
that each solve a sub-problem, see 0(a). For this
approach extensions to the standard back-
propagation learning algorithm are necessary.
For example techniques to schedule the learning
of the modules to prevent unlearning, as
proposed in 0.

Hierarchical networks go one step further in the
compositional sense. Each node in a neural
network may be again a neural network, or a
specialized function, as shown in 0(b). So a
node's evaluation function is implemented by a
neural network, while preserving the weights on
its inputs from the upper layer.
Both the modular and hierarchical approach
focus on the structure of the overall network, this
in contrast to the ensemble approach. Where data
engineering suffices to support ensemble
engineering, for modular and hierarchical
networks also structure engineering should be
defined. Both data-engineering and structure
engineering are elements of a more generic
knowledge engineering discipline.

For the introduction of the problem we look at
the function |sin(x)| * exp(-x) as appearing in an
experiment in the non-destructive test of stitch
welds [2]. There are some clear discontinuities in
this function, that make it hard to learn on a
network using a sigmoid transfer. It is widely
claimed that neural networks need a
differentiable _ and therefore continuous _
transfer. A similar observation seems valid for
the function to be approximated. Nevertheless
functional modularity proves to be able to
approximate the target. Therefore the question
arises: is there a structure transformation that
links a learnable network to one that is more
efficiently executable?

2.STRUCTURE
TRANSFORMATION
Structure transformations are defined from two
basic operations on nodes:

• The composition of several nodes into a
single node

• The decomposition of a single node into
a (sub-) network of nodes.

Structure transformations require that the
behavior of the structure before and after the
transformation is identical: function
preservation.

In general, structure transformations are possible
for function networks. This implies the definition
of composition and decomposition rules for the
nodes in such networks. So, functional networks
are compositional, of course under certain
conditions.

Neural networks, as they are, do not support
compositionality. The question is now to
formulate the conditions that enable
compositionality for the general case of a
modular neural network. If such conditions
cannot be found, then the modular network needs
to be considered as a function network, in which
each function is to be considered as a
specification of a neural module. Since a
function is a specification of a module, no formal
manipulation of the structure of the modular
neural network will exist. Here, the trained
modular network is considered as an
implementation of the module's function.

The main consequence of this is that the neural
modules need to be re-trained from scratch after
each manipulation. This is feasible, but induces
much training overhead. So, composition rules or
conditions are essential for neural networks to
prevent (or minimize) re-training components in
a modular network.

In this paper, we study this problem by
considering only feed-forward neural networks
with one hidden layer and a sigmoid (or its
piece-wise linear functional equivalent)
evaluation function for its neurons. Both for
composition as for decomposition we can
distinguish between a parallel and a cascade
(de-) composition.

Modular And Hierarchical Specialization In Neural Networks

721

A.J.W.M. ten Berg, L. Spaanenburg

2.1 Parallel (de-) composition
The transformation whereby a network is split
into two or more different networks with the
same inputs, while overall covering the original
function is called decomposition.. The reverse is
called a composition. Presume that both
composing parts are implemented with neural
networks, is this composition then feasible? Yes,
since the networks can be merged in a very
simple way as shown in 0. In this case all the
layers are simply merged, and duplicate input
nodes can be merged into single nodes.
The same holds also for the decomposition, in
which neurons in the hidden layer may need to
be duplicated over both nodes. In 0c some arcs
can be added to complete the module to a fully
connected network. However the weights on
these additional arcs should be zero. The new
module has again a single hidden layer. So the
composition of modules in a parallel way is
transparent and therefore feasible. Also the
parallel decomposition is feasible, but copies of
input and hidden nodes must be made.

Figure 2. Parallel (de-) composition

2.2 Cascade (de-) composition
In the cascade (de-) composition, some of the
outputs of the internal nodes are input to the
other internal node, together constituting the
overall node. However, a cascade modular
network has also internal arcs, this in contrast to
parallel modular networks.

In case neural networks implement both solid-
border nodes a complication occurs. The cascade
of both neural networks cannot be easily
reconstructed into a neural network with one
hidden layer. This is caused by the non-linear
(sigmoid) evaluation function in the neurons. It
will be impossible to reconstruct the weights on

all arcs in the modular network after
decomposition.
The resulting network in (b), has a number of
peculiarities. First, it has not the same number of
hidden layers for all inputs to each of the outputs,
since some paths from inputs to some output are
longer than others. For the upper inputs, four
hidden layers exist, for the lower input only one.
However, these layers can be merged into one
again. The real issue occurs for decomposition.
Due to the non-linear evaluation function in the
hidden nodes, the merged hidden nodes cannot
be disassembled easily into several hidden
layers. So, composition is possible, but
decomposition into a cascade network is
prohibited by the non-linear evaluation function.

Figure 3. Cascade (de-) composition

3. FUNCTION SPECIALIZATION
The obvious direction for a solution is to
investigate relaxation of the sigmoid function.
An overview of the historical progress, both in
separation as in coverage, is depicted. Research
on modifications of the evaluation function [3]
has been done in order to investigate in
simplifications for implementation purposes. It is
shown in [4] that the evaluation function of the
neurons is not always used on its full domain, but
in most cases only in a subset of it, called the
active domain. By this, a linearized evaluation
function as valid in the neuron's active domain is
sufficient to guarantee the accurate overall
network functionality.

Modular And Hierarchical Specialization In Neural Networks

722

A.J.W.M. ten Berg, L. Spaanenburg

Figure 4. Historical Progress

Next, this type of behavior transformations might
help in case of certain cascade transformations,
but as shown in [4], the assumption on the
evaluation function's domain subset is not valid
for all networks. This validity is expressed in [3]
by a 'redundancy' measure.

This type of transformations is not really suited
for compositionality, since the behavior is also
modified. Concluding, this type of behavioral
transformations is not sufficiently general to
enable cascade decompositions. However, it
shows that partial linear evaluation functions are
quite powerful in neural networks, without loss
of accuracy.

Our central assumption is that the sigmoid
transfer function f can be interpreted as a
rounding function on a piece-wise linear
function. From [4] we know it as:

jjj

jjj

jjj

j abin
abin

else
if
if

bina
out)1(1

0
−≥
−≤

+∗
=

jin jsum

where represents (1)

This piece-wise linear function removes the non-
linearities from the network and therefore allows
compositionality for cascade topologies, where
the elements can be shown to be again networks
without need for re-learning after a
decomposition.

The property that allows re-computing the
weights in decomposition from a composed node
is exactly found in the pieces from which the
composed function is built. When computing a
weight for each line-piece in the composed
function it is always possible to find a

decomposition for the function. Unfortunately,
the original nodes and weights can not be
recovered, but it is possible at least to decompose
a network into different networks again. That is,
networks with one hidden layer.

Assigning a hidden node to each line-piece in the
function can easily derive the number of hidden
neurons. The direction of each line-piece leads
then to the weight(s) for that node. So, piece-
wise linear evaluation allows the decomposition
of a single network into cascade networks
without the need to re-learn both component
networks.

4. PIECE-WISE LINEAR
EVALUATION
In [4] piece-wise linear evaluation for neural
networks was presented without comparison with
the sigmoid evaluation. It provides a dedicated
and little general approach to training and design
of the network architecture.

In this paper we compare the alternatives since
we want to show the generic feasibility of piece-
wise linear evaluation. Analyzing its learning
behavior and the accuracy that can be obtained
with this type of evaluation can show its
feasibility.

As example function to be learned we choose the
weighted sine function f(x)=abs(sine(x)) × exp(-
x) [2], because it is non-trivial and consists of
some sub-functions that can easily be separated
into modules. This function is interesting, since it
applies the abs function that introduces
discontinuities on the multiples of π/2. Learning
this type of discontinuity is well known to be
difficult for the standard sigmoid neuron
evaluation. Furthermore, output normalization of
f(x) is superfluous.

For all cases a relative low learning rate of 0.2
with a momentum of 0.3 was applied. The
learning rate needed to be low for learning
convergence of the piece-wise linear evaluation
function. For the sigmoid also a value of 0.6 was
fine for learning, but makes the comparison
invalid.

Modular And Hierarchical Specialization In Neural Networks

723

A.J.W.M. ten Berg, L. Spaanenburg

Figure 5. Non-normalized error for learning with

hidden node range for sigmoid evaluation

In 0 we have displayed the learning error of a
sigmoid evaluation for several hidden neuron
counts. There are some apparent learning
problems. This may be explained by the typical
character of the example function, with its
discontinuities at π/2 multiples, that are difficult
for the sigmoid, which can be observed in the
late descent from the 0.5 error value downwards.

The piece-wise linear function is expected to
learn the discontinue behavior on the x=π/2
multiples. The piece-wise linear function was
modeled such that it came as close as possible to
the sigmoid function. This is done in order to
keep the error and weight values close to those of
the sigmoid function and prevents training
issues.

While learning how large the impact is of the
'smoothing' effect of the sigmoid, especially next
to the borders between the different line-pieces.
It turns out that the maximal difference at any
point between the sigmoid and the piece-wise
linear function is minimal when a=0.5/2.6 and
b=0.5 in (1).

Figure 6. Error for learning with hidden node

range for piece-wise linear evaluation
It is easy to see that the linear evaluation learns
more stable than the sigmoid. The main

difference is the dependence of the learning
accuracy on the hidden neuron count. But, when
the accuracy is sufficient, the learning will cause
no problems. Apparently, the piece-wise linear
evaluation is better equipped to handle the
discontinuities in the function to be trained.

In other words, the linear evaluation allows an
additional degree of freedom in signal
approximation. Raising the amount of hidden
neurons improves the approximation accuracy,
something the sigmoid evaluation is unable to
do. A typical result is shown in 0. Where the
sigmoid is always suffering from the bias-
variance problem, we are less dependent in the
case of a piece-wise linear approximation. For
instance, the best accuracy for a 15 node network
was found to be 5.0 E-2 and for 25 nodes to be
4.2 E-2. This signals a demand for many hidden
neurons, that can be structurally improved by
mixing sigmoid and linear approximation.

Figure 7 .Piece-wise linear evaluation accuracy

for 25 hidden nodes

A number of experiments have been performed
to proof the concepts. The relative learning
speeds of each composition should provide
information on hierarchical network learning, or
more specific, provide information on learning
with specialized evaluation functions. For
reference purposes, we have first checked on the
difference between

• Piece-wise linear only, denoted by 'lin'.
• Sigmoid only, denoted by 'sig'.

Applying the sine or exp function in the hidden
nodes makes little sense, since the sine and exp
functions are very specific and thus prohibits
learning to an acceptable level of accuracy.

Modular And Hierarchical Specialization In Neural Networks

724

A.J.W.M. ten Berg, L. Spaanenburg

Figure 8.Comparison

The results are shown in 0. Overall the linear
evaluation learns better than the sigmoid, as the
sigmoid has difficulties to learn the
discontinuities at the x=π/2 multiples. This
causes local extrema in the error domain, that
become apparent through the difficult learning
during the first 500 epochs in 0.

5. STRUCTURING THE PROBLEM
Next, we have applied several combinations of
evaluation functions to compare the effect of
different specializations:

• 'lin+sig' -Linear and sigmoid, on a 50/50 base
• 'lin+sin' - Linear and sine, on a 50/50 base.
• 'sig+sin' - Sigmoid and sine, on a 50/50 base.

As shows, the sine evaluation adds enormously
to the learning speed, in combination with a
linear evaluation. However, instability occurs in
the early phases of the training process, where
the symmetry of the evaluation function easily
causes a large amount of learning indecision.
This results in such large errors, that we have
simply omitted these data from the figure.

We see from the 'lin+sig' curve, that the mixture
of linear and sigmoid evaluation will be worse
than pure linear but still better than pure sigmoid.
Typically, the 'lin+sin' and 'sig+sin' training is
less predictable than the sigmoid or linear-only
learning. It happens quite often that a local
optimum determines the best solution found, but
with far from an acceptable accuracy. This did
not happen for the 'sig+lin' and the 'lin' training.

Figure 9.Effect of Modularity

0 compares two hierarchical combinations
'lin+sin' and 'sig+sin', with two modular
networks, both with sine and exp as specialized
modules, the first with a linear evaluation (the
'ext-lin' curve), the second with a sigmoid
evaluation (the 'ext-sig' curve). All modules
deliver their output to the input of the network to
be trained.

Figure 10. Effect of Hierarchy

Remarkable in 0 is that the modular approach
(trains only the second stage network) learns
much more smoothly than the hierarchical
network. The hierarchical networks learn faster,
but in case of the linear-sine combination very
large error values in the early stages of the
training occur. Again we observe that both
hierarchical combinations 'lin+sin' and 'sig+sin'
learn unpredictable. In several training runs these
combinations converged into a local optimum
with unacceptable error levels.

The second part of the experiment compares
modularity and hierarchy. This is done by
comparison of the specialized evaluation
functions with the simple modular approach as
described in figure 2. This experiment was done
for:

Modular And Hierarchical Specialization In Neural Networks

725

A.J.W.M. ten Berg, L. Spaanenburg

• both the sine and exp functions in the
first stage.

• sine in the first stage with x input to
the second.

• exp in the first stage with x input to the
second.

•
So, in all cases only the network in the second
stage needs to be learned, thus ruling out
learning scheduling issues in our experiment. Of
course, on a larger scale, learning scheduling will
still be required.

It is clear that the exp function provides the
network in the second stage with relatively little
information, due to its slow learning.
Nevertheless the evaluation function has some
influence, as the linear evaluation learns clearly
faster.

The sine function clearly provides more
information, which results in faster learning. In
this case, the choice of evaluation function does
not have much impact.

Overall what we observe from these experiments
is the improved learning by adding functional
specialization to the network. Also the linear
function may be considered as specialization,
due to its ability to fit the discontinuities. This is
of importance as linear functions are amenable to
linear transformation: function conserving
rewriting rules of neural structures that do not
require post-learning.

Figure 11.Effect of Compositionality

6. CONCLUSIONS
In this paper we have presented the concept of
hierarchical networks which is based on
functional specialization. We have described the
implications of functional specialization for
learning in either a modular or a hierarchical

network, illustrated by a simple experimental
“proof of concept”. Given the results obtained, it
is clear that in general functional specialization
pays off and increases learning speed. Secondly,
modularity provides a smoother learning curve,
whereas hierarchy more easily ends up in a fast
learning, with the observed larger chance of
getting stuck into some local optimum. Further
the lower alfa value than for pure sigmoid
networks are more than compensated by the
learning speed increase that is obtained. We have
also shown by these experiments that structure
engineering is essential to improve neural
network performance additional to data
engineering.

In contrast to the popular belief, there does not
seem to be a clear preference in terms of
performance. A piece-wise linear evaluation
function in the nodes provides at least the same
level of accuracy as a sigmoid evaluation. This is
however at the cost of more hidden nodes than
are needed in sigmoid based networks. Next to
this conclusion, the results also show that for
functions with certain types of discontinuities,
piece-wise linear outperforms the sigmoid
evaluation, since accuracy scales with the
number of hidden nodes for the piece-wise linear
evaluation. This supports a need for designated
specialization of the evaluation functions in
neural networks.

This result is relevant for a wide variety of signal
processing applications. Next to the example
featured here, this includes also a number of
adaptive correction filters as for instance in
digital decimation for oversampled A/D
converters.

But, the main result of our experiments is that
compositionality of modular neural networks is
possible under the condition of piece-wise linear
evaluation. Piece-wise linear evaluation provides
the ability to re-compute the weights for hidden
nodes in a decomposition from a composite
node. This ability enables cascade
compositionality, which is sufficient for
compositionality in general as we showed. By
this result, structure manipulation becomes the
key to knowledge engineering for ANN
implementations.

REFERENCES

Modular And Hierarchical Specialization In Neural Networks

726

A.J.W.M. ten Berg, L. Spaanenburg

[1] G. Auda and M. Kamel, “Modular neura
Networks: A survey”, Int. Journal of Neural
Systems, Vol. 9, No. 2, (April 1999), pp. 129-
151.

l [1] [6] A. Sharkey, “Multi-Net Systems” in
“Combining Artificial Neural Nets” Ed. A
Sharkey, Springer-Verlag, London, ISBN 1-
85233-004-X.,1999.

[2] T. Caelli, L.Guan and W.Wan, “Modularit
in Neural Computin”, Proceedings of the IEEE
87, No.9, September 1999, pp. 1497-1518.

y [2] [7] M.H. ter Brugge et al., “On the representation
of data for optimal learning”, Proceedings
ICNN’95 Perth, pp. 3180-3184, 1995.

[3] E. Barakova, “Learning Reliability: a stud
on indecisiveness in sample selection” PhD
thesis, Rijksuniversiteit Groningen, ISBN 90-
367-09873, 1999.

y [3] [8] H. Keegstra et alieni, “Exploiting Network
Redundancy for Low-Cost Neural Network
Realization”, Digest ICNN’96,Washington,
USA, pp. 951-955, 1996.

[4] L. Spaanenburg, W.J. Jansen, J.A.G. Nijhuis
“Over Multiple Rule-blocks to Modular Net”,
Proceedings Euromicro’97, (Budapest, 1997),
pp. 698-705, 1997.

, [4] [9] M. Staley, “Learning with Piece-Wise Linear
Networks”, Int. Journal of Neural Systems, Vol.
6, No. 1, pp. 43-59, March 1995.

[5] L.Spaanenburg, “Knowledge Fusion in
Modular Neural Network”, Proceedings of the
NC2000, Berlin, 2000, pp. 356-362.

Ad ten Berg: Ad ten Berg obtained a MSc. (Ingenieur) in Electronic engineering with computer science
specialisation at the University of Twente in 1983 on the topic of compiler-generation for reconfigurable
computer architectures. From 1983 to 1988 he held several positions in industry in the field of CAD for IC-
design. In 1988 he joined the University of Twente as assistant professor in the Computer Science faculty.
His field of expertise was research in the area of design methodologies for computer architectures. Among
others he studied synthesis methodologies and different modelling techniques among which dataflow
modelling and relational algebra. Also research was done to the supporting optimisation algorithms,
focussing on genetic algorithms in combination with neural networks. In 1995 he joined Philips Research
where he headed the Synthesis department of the Electronic Design and Tools group. This group was
responsible for several of the internal digital design tools developed in Philips. From 2001 onwards he
heads the research group Digital Design and Test at the “Natuurkundig Laboratorium” of Philips Research.
His current interests are digital design, transformational design methods, system-level design and neural
networks. The engineering of neural networks has his special interest.

Lambert Spaanenburg: Lambert Spaanenburg received the M.Sc. degree in Electrical Engineering from
Delft University in 1972. He worked in various positions at Twente University (Enschede, The
Netherlands) and consulted to industry in the area of microelectronics. During this period he also spent a
sabbatical leave with the VENUS group at Siemens Research Laboratories (Muenchen-Perlach, Germany)
on software and hardware design frames, which subsequently became part of his Ph.-D. thesis. In 1988 he
joined the Institute for Microelectronics Stuttgart (Vaihingen, Germany) to manage the Signal Processing
Department. Here, novel software and hardware functions for automotive control were developed and
demonstrated. This line of research was continued when he moved in 1993 to Rijksuniversiteit Groningen
(Groningen, The Netherlands) to found the Chair in Technical Computing Science. Next to heading the
IWI Cluster on Systems Technology, he started the Research & Consultancy Center IMPACTS, the
predecessor of Dacolian. Of late, he started the Intelligent Systems on Silicon group at Lund University
(Lund, Sweden). Spaanenburg has published more than 160 refereed articles and holds 5 patents. He
founded the journal Integration and still is editor of the VLSI Design Journal and of the Journal of
Intelligent and Fuzzy Systems.

	MODULAR AND HIERARCHICAL SPECIALIZATION�IN NEURAL NETWORKS
	A.J.W.M. ten BERG1,2 and L. SPAANENBURG1
	Ad ten Berg: Ad ten Berg obtained a MSc. (Ingenieur) in Electronic engineering with computer science specialisation at the University of Twente in 1983 on the topic of compiler-generation for reconfigurable computer architectures. From 1983 to 1988 he

