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ABSTRACT 

 
In this study, the automated diagnostic systems employing diverse and composite features for 
electrocardiogram (ECG) signals were analyzed and their accuracies were determined. In pattern 
recognition applications, diverse features are extracted from raw data which needs recognizing. 
Combining multiple classifiers with diverse features are viewed as a general problem in various 
application areas of pattern recognition. Because of the importance of making the right decision, 
classification procedures classifying the ECG signals with high accuracy were analyzed. The 
classification accuracies of multilayer perceptron neural network, combined neural network, and 
mixture of experts trained on composite features and  modified mixture of experts trained on diverse 
features were compared. The inputs of these automated diagnostic systems composed of diverse or 
composite features and were chosen according to the network structures. The conclusions of this study 
demonstrated that the modified mixture of experts trained on diverse features achieved accuracy rates 
which were higher than that of the other automated diagnostic systems trained on composite features. 
 
Keywords: : Diverse features, Composite features, Electrocardiogram (ECG) signals, Automated 
diagnostic systems 
 
 
 
1. INTRODUCTION 
Electrocardiography is an important tool in 
diagnosing the condition of the heart. The 
electrocardiogram (ECG) is the record of 
variation of bioelectric potential with respect to 
time as the human heart beats. It provides 
valuable information about the functional aspects 
of the heart and cardiovascular system. Early 
detection of heart diseases/abnormalities can 
prolong life and enhance the quality of living 
through appropriate treatment. Therefore, 
numerous research and work analyzing the ECG 

signals have been reported [1-5]. The state of 
cardiac health is generally reflected in the shape 
of ECG waveform and heart rate. It may contain 
important pointers to the nature of diseases 
afflicting the heart. However, biosignals being 
nonstationary signals, this reflection may occur 
at random in the time scale. In this situation, the 
disease symptoms may not show up all the time, 
but would manifest at certain irregular intervals 
during the day. Therefore, for effective 
diagnostics, the study of ECG pattern and heart 
rate variability signal may have to be carried out 
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over several hours. Thus, the volume of the data 
being enormous, the study is tedious and time 
consuming. Naturally, the possibility of the 
analyst missing (or misreading) vital information 
is high. Therefore, computer-based analysis and 
classification of diseases can be very helpful in 
diagnostics [1-5]. 
 
Various methodologies of automated diagnosis 
have been adopted, however the entire process 
can generally be subdivided into a number of 
disjoint processing modules: beat detection, 
feature extraction/selection, and classification. 
The initial pre-processing module of beat 
detection aims to locate each cardiac cycle in 
each of the recording leads and insert reference 
markers indicating the beginning and end of each 
interwave component. The algorithm is designed 
with two main objectives: firstly, the detector 
should provide reliable detection of each cardiac 
cycle in all recording leads and secondly, the 
temporal location of the reference points should 
be described accurately. The accuracy of 
detection of each cardiac cycle is of great 
importance since it contributes significantly to 
the overall classification result. The markers are 
subsequently processed by the feature extraction 
module, where measurements are produced for 
wave amplitudes and durations. The collective 
term for the measurements produced is 
commonly referred to as the input feature vector, 
which is considered to describe the morphology 
of the current recorded signal. The module of 
feature selection is an optional stage, whereby 
the feature vector is reduced in size including 
only, from the classification viewpoint, what 
may be considered as the most relevant features 
required for discrimination. The classification 
module is the final stage in automated diagnosis. 
It examines the input feature vector and based on 
its algorithmic nature, produces a suggestive 
hypothesis [6,7]. 
 
The wavelet transform (WT) can be applied to 
extract the wavelet coefficients of discrete time 
signals. This procedure makes use of multirate 
signal processing techniques. The proposed 
scheme is the subband coding or multiresolution 
signal analysis. The multiresolution feature of 
the WT allows the decomposition of a signal into 
a number of scales, each scale representing a 
particular coarseness of the signal under study. 
The WT provides very general techniques which 
can be applied to many tasks in signal 
processing. One very important application is the 

ability to compute and manipulate data in 
compressed parameters which are often called 
features [8]. Thus, the ECG signal, consisting of 
many data points, can be compressed into a few 
parameters. These parameters characterize the 
behavior of the ECG signal. This feature of using 
a smaller number of parameters to represent the 
ECG signal is particularly important for 
recognition and diagnostic purposes [1,4,5].  
 
Eigenvector methods are used for estimating 
frequencies and powers of signals from noise-
corrupted measurements. These methods are 
based on an eigen-decomposition of the 
correlation matrix of the noise–corrupted signal. 
Even when the signal-to-noise ratio (SNR) is 
low, the eigenvector methods produce frequency 
spectra of high resolution. These methods are 
best suited to signals that can be assumed to be 
composed of several specific sinusoids buried in 
noise. Hence, to gain some noise immunity it is 
reasonable to retain only the principal 
eigenvector components in the estimation of the 
autocorrelation matrix. Using the frequency 
estimations provided by any one of these 
methods, the power levels of the signal can be 
determined from the power matrix [9,10]. In this 
study, three eigenvector methods (Pisarenko, 
multiple signal classification – MUSIC, and 
Minimum-Norm) were selected to generate the 
power spectral density (PSD) estimates. 
 
As in traditional pattern recognition systems 
(Figure 1), the present model consists of three 
main modules: a feature extractor that generates 
a feature vector from the ECG signals, feature 
selection that composes diverse and composite 
features (wavelet coefficients and power levels 
of the PSDs obtained by the eigenvector 
methods), and feature classifiers that output the 
class based on the diverse and composite features 
(multilayer perceptron neural network – 
MLPNN, combined neural network – CNN, 
mixture of experts – ME and modified mixture of 
experts – MME). A significant contribution of 
the present work was the composition of diverse 
and composite features by the usage of discrete 
wavelet transform (DWT) and eigenvector 
methods which were used to train novel classifier 
(MME trained on diverse features) for the ECG 
signals. The ECG signals (normal beat, 
congestive heart failure beat, ventricular 
tachyarrhythmia beat, atrial fibrillation beat) 
from the Physiobank database [11] were used to 
train and test the classifiers. The present study 
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was conducted with the purpose of answering the 
question of whether the automated diagnostic 
systems with diverse features (MME) or 
composite features (MLPNN, CNN and ME) 
improve the capability of classification of the 
ECG signals. To evaluate performance of the 
classifiers, the classification accuracies, the 
central processing unit (CPU) times of training 
of the classifiers (diverse or composite feature 
vectors used as inputs) were compared. 
 
2. SPECTRAL ANALYSIS USING 
DISCRETE WAVELET TRANSFORM 
The ECG signals are considered as representative 
signals of cardiac physiology, useful in 
diagnosing cardiac disorders. The most complete 
way to display this information is to perform 
spectral analysis. The ECG signal, consisting of 
many data points, can be compressed into a few 
parameters by the WT. These parameters 
characterize the behavior of the ECG signal and 
they can be used for recognition and diagnostic 
purposes. The WT can be thought of as an 
extension of the classic Fourier transform, except 
that, instead of working on a single scale (time or 
frequency), it works on a multi-scale basis. This 
multi-scale feature of the WT allows the 
decomposition of a signal into a number of 
scales, each scale representing a particular 
coarseness of the signal under study. The 
procedure of multiresolution decomposition of a 
signal [ ]nx  is schematically shown in Figure 2. 
Each stage of this scheme consists of two digital 
filters and two downsamplers by 2. The first 
filter, [ ]⋅g  is the discrete mother wavelet, high-

pass in nature, and the second, [ ]⋅h  is its mirror 
version, low-pass in nature. The downsampled 
outputs of first high-pass and low-pass filters 
provide the detail, 1D  and the approximation, 

1A , respectively. The first approximation, 1A  is 
further decomposed and this process is continued 
as shown in Figure 2.  
 
All wavelet transforms can be specified in terms 
of a low-pass filter h , which satisfies the 
standard quadrature mirror filter condition: 

1)()()()( 11 =−−+ −− zHzHzHzH ,       (1) 
where )(zH  denotes the z-transform of the 
filter h . Its complementary high-pass filter can 
be defined as 

)()( 1−−= zzHzG .                                       (2) 
A sequence of filters with increasing length 
(indexed by i ) can be obtained: 

)()()( 2
1 zHzHzH ii

i

=+   

)()()( 2
1 zHzGzG ii

i

=+  ,     1,,0 −= Ii …                               
(3) 

with the initial condition 1)(0 =zH . It is 
expressed as a two-scale relation in time domain 

[ ] )()( 21 khhkh ii i ∗= ↑+  

[ ] )()( 21 khgkg ii i ∗= ↑+ ,          (4) 

where the subscript [ ] m↑⋅  indicates the up-
sampling by a factor of m  and k  is the equally 
sampled discrete time.  
The normalized wavelet and scale basis functions 

)(, kliϕ , )(, kliψ  can be defined as 

)2(2)( 2/
, lkhk i

i
i

li −=ϕ  

)2(2)( 2/
, lkgk i

i
i

li −=ψ ,                        (5) 

where the factor 2/2 i  is an inner product 
normalization, i  and l  are the scale parameter 
and the translation parameter, respectively. The 
discrete wavelet transform (DWT) 
decomposition can be described as 

)()()( ,)( kkxla lii ϕ∗=    

)()()( ,)( kkxld lii ψ∗= ,                             (6) 

where )()( la i  and )(ldi  are the approximation 
coefficients and the detail coefficients at 
resolution i , respectively [8]. 
 
3. SPECTRAL ANALYSIS USING 
EIGENVECTOR METHODS 
The Pisarenko method is particularly useful for 
estimating PSD which contains sharp peaks at 
the expected frequencies. The polynomial 

)( fA  which contains zeros on the unit circle 
can then be used to estimate the PSD. 

∑
=

−=
m

k

fkj
k eafA

0

2)( π                 (7) 

where )( fA  represents the desired polynomial, 

ka  represents coefficients of the desired 
polynomial, and m  represents the order of the 
eigenfilter, )( fA . From the eigenvector 
corresponding to the minimum eigenvalue, the 
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Pisarenko method determines the signal PSD 
from the desired polynomial: 

2)(
1)(
fA

fPPISARENKO = .                    (8) 

 
The MUSIC method is also a noise subspace 
frequency estimator and eliminates the effects of 
spurious zeros by using the averaged spectra of 
all of the eigenvectors corresponding to the noise 
subspace. The resultant PSD is determined from 

∑
−

=

= 1

0

2)(1
1)( K

i
i

MUSIC

fA
K

fP             (9) 

where K  represents the dimension of noise 
subspace, )( fAi  represents the desired 
polynomial that corresponds to all the 
eigenvectors of the noise subspace. 
 
In addition to the Pisarenko and MUSIC 
methods, the Minimum-Norm method was 
investigated. In order to differentiate spurious 
zeros from real zeros, the Minimum-Norm 
method forces spurious zeros inside the unit 
circle and calculates a desired noise subspace 
vector a  from either the noise or signal 
subspace eigenvectors. Thus, while the Pisarenko 
method uses only the noise subspace eigenvector 
corresponding to the minimum eigenvalue, the 
Minimum-Norm method uses a linear 
combination of all noise subspace eigenvectors. 
The Minimum-Norm PSD can be estimated as 
follows: 

2)(
1),(
fA

KfPMIN =     (10) 

where K  represents the dimension of the noise 
subspace [9,10]. 
  
4. BRIEF REVIEW OF 
IMPLEMENTED CLASSIFIERS 
Several problems occurring with the usage of a 
composite feature are given in the following:  

- Its dimension is higher than that of any 
component feature and it is well known 
that high-dimension vectors will not 
only increase computational complexity 
but will also produce implementation 
problems and accuracy problems. 

- It is difficult to combine several features 
due to their diversified forms, e.g., they 
may be continuous variables, binary 

values, discrete labels, structural 
primitives. 

- The component features are usually not 
independent. 

In general, therefore, the use of a composite 
feature does not provide a significantly improved 
performance. However, the combination of 
multiple classifiers is a good solution for the 
problem involving a variety of features [12-14].  
 
There have recently been widespread interests in 
the use of multiple models for pattern 
classification and regression in statistics and 
neural network communities. The basic idea 
underlying these methods is the application of a 
so-called divide-and-conquer principle that is 
often used to tackle a complex problem by 
dividing it into simpler problems whose solutions 
can be combined to yield a final solution. 
Utilizing this principle, Jacobs et al. [15] 
proposed a modular neural network architecture 
called ME. The ME models the conditional 
probability density of the target output by mixing 
the outputs from a set of local experts, each of 
which separately derives a conditional 
probability density of the target output. The 
outputs of expert networks are combined by a 
gating network simultaneously trained in order to 
stochastically select the expert that is performing 
the best at solving the problem [16,17]. Based on 
the probabilistic model, learning in the ME 
architecture is treated as a maximum likelihood 
problem. Jordan and Jacobs [18] have proposed 
an expectation-maximization (EM) algorithm for 
adjusting the parameters of the architecture. In 
this framework a number of relatively small 
expert networks can be used together with a 
gating network designed to divide the global 
classification task into simpler subtasks 
[12,13,19]. Although the ME architecture has 
been successfully applied to several supervised 
learning tasks, it can only use a composite 
feature for classification with diverse features, 
since both gating and expert networks need to 
receive the same input. A MME network 
structure was proposed by Chen [12] for the 
effective use of diverse features representing the 
signals under study. Another network structure 
used in discrimination of the signals is the CNN, 
which combines the predictions of several 
models trained on composite features. The 
general framework for prediction using an 
ensemble of models consists of two levels and is 
often referred to as stacked generalization [5,20].  
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5. COMPUTATION OF DIVERSE 
FEATURES 
Spectral analysis of the ECG signals was 
performed using the DWT as described in 
Section 2. The ECG signals can be considered as 
a superposition of different structures occuring 
on different time scales at different times. One 
purpose of wavelet analysis is to separate and 
sort these underlying structures of different time 
scales. Selection of appropriate wavelet and the 
number of decomposition levels is very 
important in analysis of signals using the WT. 
The number of decomposition levels is chosen 
based on the dominant frequency components of 
the signal. The levels are chosen such that those 
parts of the signal that correlate well with the 
frequencies required for classification of the 
signal are retained in the wavelet coefficients. In 
the present study, the number of decomposition 
levels was chosen to be 4. Thus, the ECG signals 
were decomposed into the details 41 DD −  and 

one final approximation, 4A . Usually, tests are 
performed with different types of wavelets and 
the one which gives maximum efficiency is 
selected for the particular application. The 
smoothing feature of the Daubechies wavelet of 
order 2 (db2) made it more suitable to detect 
changes of the ECG signals. Therefore, the 
wavelet coefficients were computed using the 
db2 in the present study. The computed discrete 
wavelet coefficients provide a compact 
representation that shows the energy distribution 
of the signal in time and frequency. Therefore, 
the computed detail and approximation wavelet 
coefficients of the ECG signals were used as the 
feature vectors representing the signals. A 
rectangular window, which was formed by 256 
discrete data, was selected so that it contained a 
single ECG beat. For each ECG beat, the detail 
wavelet coefficients ( 4,3,2,1   , =kd k ) at the 
first, second, third and fourth levels 
( 183466129 +++  coefficients) and the 
approximation wavelet coefficients ( 4a ) at the 
fourth level (18 coefficients) were computed. 
Then 265 wavelet coefficients were obtained for 
each ECG beat. 
 
The Pisarenko, MUSIC, and Minimum-Norm 
methods were employed to obtain PSDs of the 
ECG signals. Using the frequency estimations 
provided by any one of these methods, the power 
levels of the signal can be determined from the 

power matrix. In the Pisarenko method, the 
eigenvector associated with the minimum 
eigenvalue of the estimated autocorrelation 
matrix is used to calculate the PSD. This method 
may produce spurious zeros and has a relatively 
poor statistical accuracy. In all cases, the 
Pisarenko PSD showed extra peaks as compared 
to the PSDs obtained from the MUSIC or 
Minimum-Norm methods. The MUSIC method 
eliminates these spurious zeros by averaging the 
spectra from all of the eigenvectors 
corresponding to noise subspace.  The MUSIC 
method is the most widely studied, 
computationally simple, high-resolution 
eigenvector method. The MUSIC method can be 
considered as an appropriate method for spectral 
analysis of the ECG signals. The Minimum-
Norm method treats the problem of spurious 
zeros by forcing them inside the unit circle. For 
each beat the 129 points of the logarithm of the 
power levels of the PSDs were computed. 
 
Feature selection plays an important role in 
classifying systems such as neural networks. The 
feature selection process performed on a set of 
predetermined features. Features are selected 
based on either 1) best representation of a given 
class of signals, or 2) best distinction between 
classes. High-dimension of feature vectors 
increased computational complexity and the 
neural networks trained on these feature vectors 
produced lower accuracy. In order to reduce the 
dimensionality of the extracted diverse feature 
vectors, statistics over the set of the wavelet 
coefficients and power levels of the PSDs were 
used. The following statistical features were used 
in reducing the dimensionality of the extracted 
diverse feature vectors representing the ECG 
signals:  
 
Maximum of the power levels of the PSDs 
obtained by the eigenvector methods, maximum 
of the wavelet coefficients in each subband. 
Minimum of the power levels of the PSDs 
obtained by the eigenvector methods, minimum 
of the wavelet coefficients in each subband.    
Mean of the power levels of the PSDs obtained 
by the eigenvector methods, mean of the wavelet 
coefficients in each subband.  
Standard deviation of the power levels of the 
PSDs obtained by the eigenvector methods, 
standard deviation of the wavelet coefficients in 
each subband. 
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Tables 1 and 2 present the extracted features of 
four exemplary records from four classes. From 
Tables 1 and 2, one can see that the extracted 
diverse features of the four classes of ECG beats 
are different from each other. This result 
indicated that they can serve as useful parameters 
in classifying the ECG signals. The diverse 
feature vectors were computed by the usage of 
the MATLAB software package. 
 
6. APPLICATION OF AUTOMATED 
DIAGNOSTICS SYSTEMS TO ECG 
SIGNALS 
The adequate functioning of neural networks 
depends on the sizes of the training set and test 
set. Training and test sets were formed by  720 
vectors (180 vectors from each class) of 32 
dimensions (dimension of the extracted feature 
vectors). The 360 vectors (90 vectors from each 
class) of 32 dimensions were used for training 
and the 360 vectors (90 vectors from each class) 
of 32 dimensions were used for testing. The term 
vector is used for defining the extracted features 
of the samples of an ECG beat. 
 
MME classifier with 12 expert networks was 
adopted as the structure of the MME classifier 
with four diverse feature vectors and the 
ensemble of expert networks in this structure was 
divided into four groups (three expert networks 
in each group). For the purpose of different 
classifiers comparison, ME classifier configured 
with 4 expert networks was implemented to deal 
with the same classification problem and they 
were based on a composite feature set (32 
inputs). Both the gating and expert networks in 
the MME and ME classifiers were MLPNNs 
with a single hidden layer. Four sets of neural 
networks were trained for the first level models 
in the CNN since there were four possible 
outcomes of the diagnosis of the ECG beats. 
Networks in each set were trained so that they 
are likely to be more accurate for one type of 
beat than the other beat. The network 
architecture was the MLPNN with a single 
hidden layer. Each network had 32 input 
neurons, equal to the dimension of composite 
feature vector. The number of hidden neurons 
was 30 and the number of output was 4. Samples 
with target outputs were given the binary target 
values of (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0). 
Second level neural network was trained to 
combine the predictions of the first level 
networks. The second level network had 16 

inputs which correspond to the outputs of the 
four groups of the first level networks. The 
targets for the second level network were the 
same as the targets of the original data. The 
number of outputs was four and the number of 
hidden neurons was chosen to be 30. In order to 
compare performance of the different classifiers, 
for the same classification problems the 
MLPNN, which is the most commonly used 
feedforward neural networks, was also 
implemented. The single hidden layered (25 
hidden neurons) MLPNN was used to classify 
the ECG beats based on a composite feature 
vector (32 inputs). Different experiments were 
performed during implementation of these 
classifiers and the number of hidden neurons was 
determined by taking into consideration the 
classification accuracies. In the hidden layers and 
the output layers, the activation function was the 
sigmoidal function. Table 3 defines the network 
parameters of the classifiers implemented in this 
research. 
 
In order to compare the classifiers used for 
classification of the ECG beats, the total 
classification accuracies on the test sets and the 
CPU times of training (for Pentium 4, 3.00 GHz) 
of the four classifiers are presented in Table 4. 
From the classification results presented in Table 
4, one can see that the MME classifier trained on 
the four diverse feature vectors produce 
considerably better performance than that of the 
ME, CNN and MLPNN classifiers trained on the 
composite feature vector. 
 
7. CONCLUSION 
The MMEs used for classification of the ECG 
signals were trained, cross validated and tested 
with the extracted diverse feature vectors. For 
comparison different classifiers, the ME, CNN 
and MLPNN classifiers were implemented to 
deal with the same classification and the ME, 
CNN and MLPNN classifiers were used to 
handle ECG signals classification based on a 
composite features. The classification accuracies 
and the CPU times of training showed that the 
MME classifiers trained on the four diverse 
feature vectors produce considerably better 
performance than that of the ME, CNN and 
MLPNN classifiers trained on the composite 
features. The results of the present study 
demonstrated that the MME can be used in 
classification of the ECG signals by taking into 
consideration the misclassification rates. 
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Figure 1. General structure of the developed ECG signals classifiers 

 

Figure 2. Subband decomposition of discrete wavelet transform implementation; [ ]ng  is the high-

pass filter, [ ]nh  is the low-pass filter 
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Table 1. The wavelet coefficients of four exemplary records from four classes 

ECG beat types Extracted Features 
Wavelet Coefficients 

Subbands 

Normal beat 

D1 D2 D3 D4 A4 
Maximum 0.2062 1.5757 0.2792 0.9683 0.5843 
Minimum -0.1814 -0.3593 -0.3977 -0.3625 -0.5159 
Mean -0.0003 0.0429 -0.0269 0.1097 -0.0941 
Standard deviation 0.0436 0.3174 0.1546 0.3707 0.3116 

Congestive heart  
failure beat 

Maximum 0.1316 0.2344 1.3364 1.3463 1.1550 
Minimum -0.1119 -0.1635 -1.0327 -1.9773 -1.2350 
Mean -0.0003 -0.0066 -0.0056 -0.0248 -0.3698 
Standard deviation 0.0259 0.0604 0.3995 0.7862 0.4014 

Ventricular 
tachyarrhythmia beat 

Maximum 0.1568 0.4554 2.1134 2.5063 4.1980 
Minimum -0.0839 -0.3181 -0.8983 -1.4226 -0.5930 
Mean -0.0001 0.0002 0.0344 0.0838 0.9075 
Standard deviation 0.0232 0.0919 0.4845 0.8299 1.1458 

Atrial fibrillation 
beat  
 

Maximum 0.0665 0.4417 0.3574 1.3044 -0.9396 
Minimum -0.0564 -0.1832 -0.3312 -0.3328 -2.0488 
Mean -0.0002 0.0037 -0.0058 0.0774 -1.5942 
Standard deviation 0.0173 0.0849 0.1238 0.4051 0.2892 

 
 
Table 2. The power levels of the PSDs obtained by the eigenvector methods of four exemplary records 
from four classes  
ECG beat types 

Extracted Features Pisarenko 
PSD values 

MUSIC PSD 
values 

Minimum-Norm 
PSD values 

Normal beat 
Maximum -8.3262 -6.1429 -5.9119 
Minimum -63.3942 -48.5747 -45.7063 
Mean -29.0350 -25.5815 -24.9883 
Standard deviation 15.5270 14.6241 13.9427 

Congestive 
heart failure 
beat 

Maximum 15.4373 14.8120 11.8117 
Minimum -58.5668 -54.1374 -52.5681 
Mean -34.2724 -33.0135 -32.4818 
Standard deviation 21.1599 19.0780 18.4921 

Ventricular 
tachyarrhythmia 
beat 

Maximum 8.9680 6.5634 5.3926 
Minimum -73.2121 -66.8833 -65.4340 
Mean -44.5406 -43.3792 -42.9259 
Standard deviation 28.8429 25.2899 24.1945 

Atrial 
fibrillation beat  
 

Maximum 19.4951 23.0237 22.6390 
Minimum -62.0746 -54.3199 -52.6743 
Mean -39.9064 -36.4000 -36.0503 
Standard deviation 21.4749 19.9989 19.1709 
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Table 3. Network parameters of the classifiers 

Classifiers
(features) 

Network parameters 

MME 
(diverse features) 

8 25 4a, 8 25 4a, 8 25 4a, 8 25 4a, 
8 25 4b, 8 25 4b, 8 25 4b, 8 25 4b,  
600c 

ME 
(composite feature) 

32 25 4a, 32 25 4d 
800c 

CNN 
(composite feature) 

32 30 16e, 16 30 4f 
1700c 

MLPNN 
(composite feature) 

32 25 4g 
2500c 

 
aDesign of expert networks: Number of input  hidden  output neurons, respectively. 
bDesign of gating networks in gate-bank: Number of input  hidden  output neurons, respectively. 
cNumber of training epochs. 
dDesign of gating network: Number of input  hidden  output neurons, respectively. 
eDesign of first level network: Number of input  hidden  output neurons, respectively. 
fDesign of second level network: Number of input  hidden  output neurons, respectively. 
gDesign of neural network: Number of input  hidden  output neurons, respectively. 

 
 
 

Table 4. The total classification accuracies and the CPU times of training of the classifiers 

Classifiers  
(features) Total classification accuracy (%) 

CPU time 
(min:s) 

MME 
(diverse features) 97.78 8:43 

ME 
(composite feature) 96.11 10:17 

CNN 
(composite feature) 95.28 14:25 

MLPNN 
(composite feature)  91.67 15:24 

 

 
 

  


