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Abstract 
Purpose: A time series comprises of a sequence of observations ordered with time. 
A major task of data mining with regard to time series data is predicting the 
future values. In time series there is a general notion that some aspect of past 
pattern will continue in future. Existing time series techniques fail to capture the 
knowledge present in databases to make good assumptions of future values. 
Design/Methodology/Approach: Application of graph matching technique to 
time series data is applied in the paper. 
Findings: The study found that use of graph matching techniques on time-series 
data can be a useful technique for finding hidden patterns in time series database.  
Research Implications: The study motivates to map time series data and graphs 
and use existing graph mining techniques to discover patterns from time series 
data and use the derived patterns for making predictions. 
Originality/Value: The study maps the time-series data as graphs and use graph 
mining techniques to discover knowledge from time series data. 
Keywords: Data mining; Time Series Prediction; Graph Mining; Graph Matching 
Paper Type: Conceptual 
 
Introduction 

ata mining is the process of extracting meaningful and 
potentially useful patterns from large datasets. Nowadays, data 
mining is becoming an increasingly important tool by modern 

business processes to transform data into business intelligence giving 
business processes an informational advantage to make their strategic 
business decisions based on the past observed patterns rather than on 
intuitions or beliefs (Clifton, 2011). Graph based framework for time 
series prediction is a step towards exploring new efficient approach for 
time series prediction where predictions are based on patterns observed 
in past.  
Time Series data consists of sequences of values or events obtained over 
repeated instances of time. Mostly these values or events are collected at 
equally spaced, discrete time intervals (e.g., hourly, daily, weekly, 
monthly, yearly etc.). When there is only one variable upon which 
observations with respect to (w.r.t) time are made, is called univariate 
time series. Data mining on Time-series data is popular in many 
applications, such as stock market analysis, economic and sales 
forecasting, budgetary analysis, utility studies, inventory studies, yield 
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projections, workload projections, process and quality control, 
observation of natural phenomena (such as atmosphere, temperature, 
wind, earthquake), scientific and engineering experiments, and medical 
treatments (Han & Kamber, 2006). 
Time series dataset constitutes of {Y1, Y2, Y3, …, Yt } values, where each Yi 
represent the value of variable under study at time i.  One of the major 
goal of Data mining in the time series is forecasting the time series i.e., to 
predict the future value Yt+1. The successive observations in time series 
are statistically dependent on time and time series modeling is concerned 
with techniques for analysis of such dependencies. In time series analysis, 
a basic assumption is made that is (i.e.) some aspect of past pattern will 
continue in future. Under this assumption time series prediction is 
assumed to be based on past values of the main variable Y. The time 
series prediction can be useful in planning and measuring the 
performance of predicted value on past data against actual observed 
value on the main variable Y. 
Time series modeling is advantageous, as it can be used more easily for 
forecasting purposes since the historical sequences of observations upon 
study on main variable are readily available as they are recorded in the 
form of past observations & can be purchased or gathered from 
published secondary sources. In time series modeling, the prediction of 
values for future periods is based on the pattern of past values of the 
variable under study, but the model does not generally account for 
explanatory variable which may have affected the system. There are two 
reasons for resorting to such time models. First, the system may not be 
understood, and even if it is understood it may be extremely difficult to 
measure the cause and effect relationship of parameters affecting the 
time series. Second, the main concern may be only to predict  the next 
value and not to explicitly know why it was observed (Box, Jenkins & 
Reinsel, 1976) 
Time Series analysis consists of  four major components for characterizing 
time-series data (Madsen, 2008). First, Trend component- these indicate 
the general direction in which a time series data is moving over a long 
interval of time, denoted by T. Second, Cyclic component- these refer to 
the cycles, that is, the long-term oscillations about a trend line or curve, 
which may or may not be periodic, denoted by C. Third, Seasonal 
component- these are systematic or calendar related, denoted by S. 
Fourth, Random component- these characterize the sporadic motion of 
time series due to random or chance events, denoted by R. Time-series 
modeling is also referred to as the decomposition of a time series into 
these four basic components. The time-series variable Y at the time t can 
be modeled as either the product of the four variables at time t (i.e., Yt = 
Tt×Ct× St× Rt) using multiplicative model proposed by (Box, Jenkins & 
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Reinsel, 1970) where Tt means Trend component at time t, Ct means 
cyclic component at time t, St means seasonal component at time t and Rt 
signifies Random component at time t. As an alternative, additive model 
(Balestra & Nerlove, 1966; Bollerslev, 1987) can also be used in which (Yt 
= Tt+Ct+St+Rt) where Yt, Tt, Ct, St, Rt have the same meaning as described 
above. Since multiplicative model is the most popular model, we will use 
it for the time series decomposition. Example of time series data is the 
airline passenger data set (Fig. 1) in which the main variable Y is the 
number of passengers (in thousands) in an airline is recorded w.r.t time, 
where each observation on main variable is recorded on monthly basis 
from January 1949 to December 1960. Clearly, the time series is affected 
by increasing trend, seasonal and cyclic variations. 

 
Fig. 1: Time series Data of the Airline Passenger Data from Year 1949 to 1960 represented 

on monthly basis. 

 
 
Review of Literature 
In time series analysis there is an important notion of de-seasonalizing 
the time series (Box & Pierce, 1970). It makes the assumption that if the 
time series represents a seasonal pattern of L periods, then by taking 
moving average Mt of L periods, we would get the mean value for the 
year. This would be free of seasonality and contain little randomness 
(owing to averaging). Thus Mt=Tt×Ct (Box, Jenkins & Reinsel, 1976). To 
determine the seasonal component, one would simply divide the original 
series by the moving average i.e., Yt/Mt= (Tt×Ct× St× Rt)/( Tt×Ct )= St× Rt. 
Taking average over months eliminates randomness and yields 
seasonality component St. De-seasonalized Yt time series can be 
computed by Yt/St.  
The approach described in (Box, et al, 1976) for predicting the time 
series, uses regression to fit a curve to De-seasonalized time series using 
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least square method. To predict the values in time series, model projects 
the De-seasonalized time series into future using regression and divide it 
by the seasonal component. The Least Square Method is explained in  
Johnson and Wichern (2002). 
Exponential Smoothing has been proposed in (Shumway & Stoffer, 1982) 
which is an extension to above method to make more accurate 
predictions. It suggests, making prediction for Yt weighing the most 
recent observation (Yt-1) by α and weighting the most recent forecast (Ft-1) 
by (1- α). Note α lies between 0 and 1 (i.e., 0≤α≤1). Thus the forecast is 
given by Ft+1= Yt-1* α +(Ft-1) * (1- α). Optimal α is chosen based on the 
smallest MSE (Mean Square Error) value during the training. 
ARIMA (Auto-Regressive Integration Moving Average Based Model) has 
also been proposed (Box, et al., 1970, 1976; Hamilton, 1989). ARIMA 
model is categorized by ARIMA(p,q,d) where p denotes order of auto-
regression, q denotes order of differentiation and d denotes order of 
moving averages. The model tries to find the value of p, q, and d that best 
fits the data. In time series forecasting using a hybrid ARIMA and neural 
network model has proposed a model that tries to find p, q and d using 
neural network (Zhang, 2003). 
 
Proposed Work: Graph Based Framework for Time Series Prediction 
In this paper, I propose to use graph based framework for time series 
prediction. The motivation to use the graphs is to capture the tacit 
historical pattern present in the dataset. The idea behind creation of 
graph over time series is to utilize two facts. First, some aspect of time 
series pattern will continue in future and graph is a data structure that is 
well suited to model a pattern. Second, similarity can be calculated 
between graphs to know the similar patterns and their order of 
occurrence. Thus, graph is created with the motivation to store a pattern 
over time series and make prediction based on similarity of observed 
pattern from historical data as an alternative to Regression and curve 
fitting. The major shortcoming of using the regression and curve fitting is 
that it requires expert knowledge about curve equation and the number 
of parameters in it. If parameters are too many there is problem of over 
fitting and if parameters are too less, model suffers from problem of 
under fitting (Han & Kamber, 2006). The complete pattern in time series 
is not known initially and it is affected by random component which 
makes the regression harder, hence deciding the curve equation and 
number of parameters in it is a major issue. 
To further explore the concept of pattern, let there be time series on 
monthly data of N years where first observation was in first month of m 
year, Data = {Y1(k)Y2(k)…Y12(k), Y1(k+1) Y2(k+1) …Y12(k+1),…, Y1(k+N)Y2(k+N)…Y12(k+N)} 
where Y1(k) means value of variable under study for first month of year k 
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& Y12(k+N) means value of variable under study for twelfth month of year 
k+N. Note m≤k≤(m+N). In general let d, be the time interval which makes 
a pattern. If a pattern has to be stored yearly and data is available 
monthly d=12, data is available quarterly d=4, etc.  Each successive 
observation to Yij (meaning month i and year j) on main variable ordered 
by time is in general given by Yi’j’ where if Yij 1≤i≤12, k≤j≤(k+N), then for 
Yi’j’ if i<12 then i’=i+1,  j’=j else i’=1,  j’=j+1. A graph over each successive d 
observation is created to store the pattern. This is called ‘last-pattern-
observed-graph’. To make the prediction we also store the knowledge in 
each graph that how the last pattern observed effect the next 
observation. This is called ‘knowledge-graph’. Example If we consider the 
data {Y1(k)Y2(k)…Y12(k), Y1(k+1) Y2(k+1) …Y12(k+1),…, Y1(k+N) Y2(k+N)…Y12(k+N)}, last-
pattern-observed-graph for Jan of year (k+1) will be generated using data 
{Y1(k)Y2(k)…Y12(k)} and knowledge-graph of Jan for year (k+1) will be 
generated using {Y1(k)Y2(k)…Y12(k), Y1(k+1)} data. Knowledge graph is created 
with intuition to capture how the variable under study changed over last 
d observations and its effect on d+1 observation. 
In time series data, the graph is created with the motivation to model 
each observation as vertex and represent the effect of variation in 
observations with respect to time in form of edges. The number of 
vertices in graph is equal to time interval over which a pattern has to be 
stored.  The edges are created to take into account the effect of each 
observation on other. Since the past values will affect the future values, 
but future values would not affect the past values and hence the edges 
are created between vertices corresponding to it and all the subsequent 
observations which measure the change in angle with horizontal. The 
graphs generated can be represented in computer memory either by 
using Adjacency matrix representation or Adjacency list representation 
(Cormen, 2001). I have used Adjacency list representation to save the 
memory required to store the graph as each graph will have n(n-1)/2 
edges thus space required will be n(n-1)/2 using adjacency list 
representation as compared to n

2
 space using adjacency matrix 

representation. 
Dataset of N tuples is partitioned into two sets. First set for training data 
of m tuples and second {N-m} tuples for training and validation of model. 
During the training phase, a Knowledge-Graph is generated over training 
data tuples over each subsequent d+1 observation. Yi(k)Y(i+1)(k)…Y(i+12)(k), 
Y(i+13) (k) where i has bounds 1≤i≤12 and if i>12 then i=1 & k=k+1 for all m 
tuples in training Dataset. Thus m-12 Knowledge-Graphs are generated. 
These generated graphs are partitioned into d sets (d=12), where each 
graph is stored in the interval over which knowledge they have captured 
(i.e. graph for all Jan’s are stored together, all Feb’s stored together, etc.). 
To implement this we have used an array of size d of linked list of graphs. 
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Each linked list stores all the knowledge graph corresponding to interval 
over which knowledge it represents.  The graphs are partitioned with the 
motivation to ease the search since while making prediction, model will 
query for all patterns observed w.r.t a particular month, since the graphs 
are already stored in partitioned form, time taken by model to execute 
this query will be O(1).  
To predict the next value in time series, model will take the last d known 
observations previous to the month on which prediction has to be done 
and compute ‘last-pattern-observed-Graph’. The model will search for a 
Knowledge graph (stored in the partitioned form corresponding to month 
for which prediction has to be made) that is most similar to ‘last-pattern 
observed graph’, considering only number of vertices equal to ‘last-
pattern observed graph’ in Knowledge-Graph. To compute the similarity 
between two graphs, graph-edit distance technique has been used 
(Brown, 2004; Bunke & Riesen, 2008). The key idea of Graph-edit 
Distance approach is to model structural variation by edit operations 
reflecting modifications in structure and labeling. A standard set of edit 
operations is given by insertions, deletions, and substitutions of both 
nodes and edges. While calculating graph edit distance for time-series 
Graph for g1 (source graph) & g2 (destination graph), requires only 
substitutions of edges (change in angle) in g2 to make it similar to g1 and a 
summation of cost incurred with each edit operation is calculated. The 
graph with least edit cost is most similar & selected as a graph that will 
form the basis, of the prediction.  
To make the prediction, model takes into account the structural 
difference between two graphs in vertex ordered weighted average 
manner. To make the prediction on graph g1 (last-pattern-observed-
Graph) using graph g2 (Knowledge Graph which is most similar to g1), 
every vertex in g1 predicts the angle between itself and the predicted 
value using the knowledge of g2 and  taking into account the difference of 
edges between itself & it’s corresponding vertex in g2 in a weighted 
average manner (where edge difference to vertex that are closer to be 
predicted are given more weight technique to apply exponential 
smoothing in Graph based time series prediction approach), and thus in 
this way each vertex predicts the angle. Every vertex makes the 
prediction & the predicted value is average of value predicted by each 
vertex. After making the prediction, once the actual observed value is 
known, Knowledge graph is generated to capture the pattern 
corresponding to the last observation and in this way model learns in an 
iterative manner. 
Experimental Results 
The code to implement Graph Based Time Series prediction approach as 
discussed above is written in java. The Graph Based Time Series 
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prediction approach was applied on the airline passenger data set, which 
was first used in (Brown & Smoothing, 1962) and then in (Box, et al., 
1976). It represents the number of airline passengers in thousands 
observed between January 1949 and December 1960 on a monthly basis. 
I have used 2 years of data for training i.e., 1949 & 1950 and estimated 
the remaining data on monthly basis implementing iterative learning as 
an observation is recorded.  
Fig. 2 represents Actual and Predicted number of Passenger using Graph 
Based Framework for Time Series prediction applied on the Time Series 
of airline passenger data set. Fig. 3 represents the corresponding 
percentage error rate observed on monthly basis. The average error 
recorded on time-series is 7.05.Fig. 4 represents the Actual and Predicted 
Number of passenger using Graph Based Framework for Time Series 
prediction applied on the De-seasonalized Time Series of airline 
passenger data set (using concept of Moving Average). Fig. 5 represents 
the corresponding percentage error rate observed on monthly basis. The 
average percentage error recorded on De-seasonalized Time series is 
5.81.  

 
Fig. 2: Actual and Predicted number of Passenger using Graph Based Framework for Time 

Series prediction applied on the Time Series of airline passenger data set (APTS). 

 

 
 

Fig. 3: Percentage Error between Actual and predicted using Graph Based Framework for 
Time Series prediction applied on the Time Series of airline passenger data set (APTS). 
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Fig. 4: Actual and Predicted number of Passenger using Graph Based Framework for Time 
Series prediction applied on the De-seasonalized Time Series of airline passenger data set 

(APTS). 

 

 
 
 

Fig. 5: Percentage Error between Actual and Predicted values using Graph Based 
Framework for Time Series prediction applied on the De-seasonalized Time Series of 

airline passenger data set (APTS). 

 
 
Conclusion & Discussion 
A new approach for time series prediction has been proposed & 
implemented which is based on graphs. The results reported show that 
using graph based framework for time series prediction on De-
seasonalized Time Series (Computed Using Concept of Moving Average) 
on The Airline Passenger Data has 94.19 percent accuracy and on direct 
Time Series of The Airline Passenger Data has 92.95 percent accuracy. 
The accuracy on De-seasonalized time series is better since this time 
series has only two factors, cyclic and trend factors which leads to less 
error rate as compared to direct application of proposed approach on 
time-series which has all the four factors cyclic, trend, seasonal and 
randomness, which makes the prediction difficult. Thus application of 
Graph based framework in conjunction to Moving average offers good 
accuracy. 
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Graph based framework approach for time series prediction has 
incorporated the concept of exponential smoothing, moving average and 
graph mining to enhance its accuracy. Graph based framework approach 
for time series prediction is a good alternative to regression. In the 
proposed approach there is no need of domain expert knowledge to 
know the curve equation and number of parameters in it. The result 
validate that the new approach has good accuracy rate.  
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