
Open Source Systems and Engineering… Iqbal, Quadri & Rasool

TRIM 7 (2) July - Dec 2011 188

Open Source Systems and Engineering: Strengths, Weaknesses and
Prospects

Javaid Iqbal

S.M.K.Quadri

Tariq Rasool
Abstract
Purpose: This paper reviews the open source software systems (OSSS) and the
open source software engineering with reference to their strengths, weaknesses
and prospects. Though, it is not possible to spell out the better of the two software
engineering processes, the paper outlines the areas where the open source
methodology holds edge over conventional closed source software engineering.
Then, the weaknesses are also highlighted, which tilt the balance the other way.
Design/Methodology/Approach: The study is based on the works carried out
earlier by the scholars regarding the potentialities and shortcomings of OSSS.
Findings: A mix of strengths and weaknesses make it hard to pronounce open
source as the panacea. However, the open source does have very promising
prospect; owing to its radical approach to the established software engineering
principles, it has spectacularly managed to carve a “mainstream” role, that too in
just over a few decades.
Keywords: Open Source Software (OSS); Open Source Development Paradigm;
Software Engineering; Open Source Software Engineering.

Introduction

pen source traces back to early 1960s, yet as a term, “open
source initiative” was coined in 1998 (Open Source, n.d). The
history of open source is closely tied to that of UNIX. The rise of

open source paradigm marks the end of the dominance of the
proprietary-driven, close source software setup that dominated the arena
over many decades. A new ideology that promises a lot in terms of
economics, development environment and unrestricted user
involvement, has been evolving in a big way thrusted into the big picture
by loosely-centralized, cooperative, and gratis contributions from the
individual developer-user to startle the purists in the field of software
engineering. Eventually, open source software phenomenon has
systematically metamorphosed from a “fringe activity” into a more
mainstream and commercially viable form. The open source initiative
succeeded spectacularly well.

 Assistant Professor. P.G Department of Computer Science, University of Kashmir- North
Campus (India). email: pzjavaidz@yahoo.co.in
 Head. P. G. Department of Computer Sciences, University of Kashmir, Jammu and
Kashmir. 190 006. email: India. quadrismk@hotmail.com
 Lecturer. P.G Department of Computer Science. Islamic University of Science and
Technology. email l: India. tariq_babu1@rediffmail.com

O

Open Source Systems and Engineering… Iqbal, Quadri & Rasool

TRIM 7 (2) July - Dec 2011 189

Defining Open source Software
The term open source software (OSS) refers to software equipped with
licenses that provide existing and future users the right to use, inspect,
modify, and distribute (modified and unmodified) versions of the
software to others. It is not only the concept of providing “free” access to
the software and its source code that makes OSS the phenomenon that it
is, but also the development culture (Raymond, 1999). Kogut and Metiu
(2001) also comment on open source as right offered to the users to
change the source code without making any payment. Nakakoji,
Yamamoto, Nishinaka, Kishida and Ye (2002) refer to OSS as software
systems that are free to use and whose source code is fully accessible to
anyone who is interested in them.

Open Source Software Engineering
The open source development (OSD) model fundamentally changes the
approaches and economics of traditional software development marking
a paradigm shift in software engineering. Open source is a software
development methodology that makes source code available to a large
internet-based community. Typically, open source software is developed
by an internet-based community of programmers. Participation is
voluntary and participants do not receive direct compensation for their
work. In addition, the full source code is made available to the public.
Developers also devolve most property rights to the public, including the
right to use, to redistribute and to modify the software free of charge.
This is a direct challenge to the established assumptions about software
markets that threaten the position of commercial software vendors (Hars
& Ou, 2001). Torvalds et al (2001) acknowledges that OSS is not
architected but grows with directed evolution. An open source software
system must have its source code available free, for its use, custom-
tailoring or its evolution in general by anyone whosoever is interested.
Thus, from the point of view of a purist in traditional software
engineering, open source is a break-away paradigm in terms of its
defiance of conventional software engineering and non-adherence to the
standardized norms and practices of the maturing software engineering
process that we have been carrying along with so much of devotion all
the way through our legacy systems. The open source development
model breaks away from the normal in-house commercial development
processes. The self-involved/self-styled open source developer-user uses
the software and contributes to its development as well, giving birth to a
user- centered participatory design process.

Open Source Systems and Engineering… Iqbal, Quadri & Rasool

TRIM 7 (2) July - Dec 2011 190

What Leads to the Success of OSS?
Many important factors have catapulted the paradigm of OSS
development to the forefront in software industry, which include cost,
time, manpower, resources, quality, credit acknowledgement, spirit of
shared enterprise etc:

 Cost: OSS products are usually freely available for public
download.

 Time: The fact that OSS is massive parallel development and
debugging environment wherein the parallel but collaborative
efforts of globally distributed developers allow the development
of OSS products much more quickly than conventional software
systems, considerably narrowing down the gestation period.

 Manpower: With the development environment being spread
across the globe, the best-skilled professionals work under the
global development environment. This means more people are
involved in the process.

 Resources: Again, more skilled professionals offer their resources
for the development of OSS products.

 Quality: OSS products are recognized for their high standards of
reliability, efficiency, and robustness. Raymond (2001) suggests
that the high quality of OSS can be achieved due to high degree of
peer review and user involvement in bug/defect detection.

 Credit Acknowledgement: The fact that people across the globe
work on OSS find a chance collaborating with their peers gaining
immediate credit acknowledgement for their contribution.

 Informal Development Environment: The informal development
environment, unlike the organizational settings, liberates the
developers from formal ways and conduct; more students see a
chance working on real-time projects at their places.

 Spirit of Shared Enterprise: Organizations that deploy OSS
products freely offer advice to one another, sharing insights
regarding the quality upliftments and lessons learnt.

Open Source Software Development Process versus Conventional
Software Development Process
Open source development is attracting considerable attention in the
current climate of outsourcing and off-shoring (globally distributed
software development). Organizations are seeking to emulate open
source success on traditional development projects, through initiatives
variously labeled as inner source, corporate source, or community source
(Dinkelacker & Garg, 2001; Gurbani, Garvert & Herbsleb, 2005). The
conventional software development process encompasses the four

Open Source Systems and Engineering… Iqbal, Quadri & Rasool

TRIM 7 (2) July - Dec 2011 191

phases comprising the software development life cycle. These phases are
planning, analysis, design, and implementation. In open source software
development process, these phases are accomplished in a way that is
probably blurry in a sense as the first three phases of planning, analysis,
and design are, kind of, blended and performed typically by a single
developer or small core group. Given the ideal that a large number of
globally distributed developers of different levels of ability and domain
expertise should be able to contribute subsequently, the requirement
analysis phase is largely superseded. Requirements are taken as generally
understood and not in need of interaction among developers and end-
users. Design decisions also tend to be made in advance before the larger
pool of developers starts to contribute. Modularization of system is the
basis for distributing the development process. Systems are highly
modularized to allow distribution of work and thereby reduce the
learning efforts to be made by new developers to participate (they can
focus on particular subsystems without needing to consider the system in
its totality). However, over-modularization can have reverse effects by
increasing the risk of common coupling, an insidious problem in which
modules unnecessarily refer to variables and structures in other modules.
Thus, there has to be a balanced approach vis-à-vis modularization.
In proprietary software, software quality testing is limited within a
controlled environment and specific scenarios (Lerner & Tirole, 2002).
However, OSS development involves much more elaborate testing as OSS
solutions are tested in various environments, by various skills and
experiences of different programmers, and are tested in various
geographic locations around the world (Lakhani & Hippel, 2003; Lerner &
Tirole, 2002; Mockus, Fielding & Herbsleb, 2002; West, 2003).
In the OSS development life cycle, the implementation phase consists of
several sub- phases (Feller & Fitzgerald, 2002):

 Code: Writing code and submitting to the OSS community for
review.

 Review: Strength of OSS is the independent and prompt peer
review.

 Pre-commit Test: Contributions are tested carefully before being
committed.

 Development Release: Code contributions may be included in the
development release within a short time of having been
submitted—this rapid implementation being a significant
motivator for developers.

 Parallel Debugging: The so-called Linus’ Law, “given enough
eyeballs, every bug is shallow” as the large number of potential

Open Source Systems and Engineering… Iqbal, Quadri & Rasool

TRIM 7 (2) July - Dec 2011 192

debuggers on different platforms and system configurations
ensures bugs are found and fixed quickly.

 Production Release: A relatively stable, debugged production
version of the system is released.

A common classification of the various stages of open source software is
planning (only an idea, no code written), pre-alpha (first release, code
written may not compile/run), alpha (code released works and takes
shape), beta (feature-complete code released but low reliability- faults
present), stable (code is usefully reliable, minor changes) and mature
(final stage- no changes).

Strengths of Open Source Software
According to Feller and Fitzgerald (2000), OSS is characterized by active
developers’ community living in a global virtual boundary. OSS has
emerged to address common problems of traditional software
development that includes software exceeding its budget both in terms
of time, and money, plus making the production of quick, inexpensive,
and high quality reliable software possible. The advantages and unique
strengths of open source software systems include release frequency,
solution to software-crisis, scalability, learnability and customer input and
so on.

 Release Frequency
One of the basic tenets of open source system is “release early, release
often” (Raymond, 1999). It is this tenet which helps a significant
feedback on a global level to shape up the open source product. With
the exceptional globally distributed test-users, who report their fault
findings back, the frequent release policy is very feasible. However, high-
release frequencies are infeasible for production environments. For these
types of uses, stable releases are provided, leaving the choice about
tracking new releases and updates in the hands of the users.

 Solution to Software-Crisis
The recurring problems of exceeding of budget, failure to meet deadlines
in development schedule, and general dissatisfaction when the product is
eventually delivered especially in highly complex systems always
demands an alternative to circumvent these problems so that the so-
called “software crisis” is dealt with. Open source software model does
promise a solution in this regard. The source of its advantage lies in
concurrence of development and de-bugging (Kogut & Metiu, 2001). In
fact, OSS is massively parallel development and debugging.

 Scalability
According to Brooks Law, “adding people to a late project makes it later”.
The logic underlying this law is that as a rule, software development
productivity does not scale up as the number of developers increases.

Open Source Systems and Engineering… Iqbal, Quadri & Rasool

TRIM 7 (2) July - Dec 2011 193

However, the law may not hold well when it comes to software
debugging and quality assurance actions. Unlike, the software
development productivity, quality assurance productivity does scale up as
the number of developers helping to debug the software increases.
Quality assurance activities scale better since they do not require as
much interpersonal communication as software development activities
(particularly design activities) often do. In an OSS, there is a handful of
core developers (who need not centralized but could be spread across
the globe) are responsible for ensuring the architectural integrity of the
software system. Then, there is a multitude of user-developers who form
a user community across the globe. This community conducts the testing
and debugging activities on the software released periodically by the core
team. There is an obvious dynamism in the roles of the developer-at core
and user- in community, in the sense that their roles may change in the
context of above discussion.

 Learnability
 A very good thing about open source software development is that it is
an inherent learning process for anyone involved with it. A member does
contribute to the software development but at the same time learns
from the community. Thus, open source is a global campaign for skill-set
development. According to Edwards (2000), “open source software
development is a learning process where the involved parties contribute
to, and learn from the community”.

 Customer Input
The informal organizational structure of core and community does not
introduce any delays in the reporting of bug by a user to the core, who
can immediately fix it. Moreover, the use of some impressive internet-
enabled configuration management tools [e.g. GNU-CVS (concurrent
versioning system)] allows a quick synchronization with updates (issued
by core) on part of community. This mechanism of immediate reward, by
way of rapid bug-fixing, in open-source user community helps upholding
the quality assurance activity. There are no restrictions on bug-fixing by
them when the source code is open or they can design a test case of the
same for use by core. Such a positive influence of the user community
supplements debugging process in its entirety thereby leading to a visible
improvement in software quality.
This discussion should not drop a notion that OSSS are a panacea. Such
systems do have their weaknesses too, in fact, plenty of them.

Weaknesses of Open Source Software
Open source is by no means a panacea and does have its own
weaknesses. As expected, most of the weaknesses are the result of lack
of formal organization or clear responsibilities.

Open Source Systems and Engineering… Iqbal, Quadri & Rasool

TRIM 7 (2) July - Dec 2011 194

 Diversity in Communication
The globally distributed development environment brings in the
developers from different cultural backgrounds and differing time-zones,
having never met in person. Moreover, even if they cross these barriers,
they hit a stumbling block when skillful community members find it hard
to communicate in English. As a result, misunderstandings do crop up and
the communicated content may be misconstrued. This may set in a feel
of lack of cooperation, good manners, and useful information among the
community.

 Uncoordinated Redundant Efforts
With little coordination among the open source team, independent
parties sometimes carry out tasks in parallel without knowing about each
other. This consumes additional resources, but it may prove to be a
blessing in disguise as there may be several solutions to choose from. The
choice amongst the alternatives makes the selection difficult.

 Absence of Organizational Formalism
It surfaces multi-pronged weaknesses. Absence of laid down formal rules
and conventions, makes it hard for the community to work on systematic
lines. This may manifest as lack of organizational commitment in terms of
a time-schedule, and a diverging organizational focus. Without a time-
schedule and without a concerted focus (spearheading), the distributed
nature helps offset priorities, which may be either nonexistent or
severely skewed towards the personal biases of influential contributors.
In this un-organizational setting where no one is boss and no one is
bossed, forcing the prioritization of certain policy matters is not possible.

 Non-Orientation of New-comers
The new-comers do not undergo skill-setting and behavior-shaping
orientation training. The new-comers have to learn the nitty-gritty
involved very subtly. The tightly-knit community can do well, sharing
their cultural backgrounds, but the new-comers are a problem. In fact,
every one competes for attention and talent; these barriers to entry are
very damaging to a project.

 Dependency on Key Persons
 The bulk of the work is done by a few dedicated members or a core team
-- what Brooks calls a "surgical team" (Jones, 2000). Instead, we find that
many projects critically depend on a few key persons who have the level
of intimate knowledge that is required to understand all parts of a large
software system. It is usually the core contributors who are the key
persons. However, this dependency can become a liability if these key
persons are unable to continue work on the project for some reason. It
may be impossible to reconstruct the implicit knowledge of these persons
from their artifacts (source code, documentation, notes, and emails)
alone. This often leads to project failure.

Open Source Systems and Engineering… Iqbal, Quadri & Rasool

TRIM 7 (2) July - Dec 2011 195

 Leadership Traits
Open source leaders who, lead by persuasion alone, are judged on the
basis of their technical skills, vision and communication skills. Raymond
(1999) points out that the success of the Linux project was to a large
degree due to the excellent leadership skills demonstrated by its founder
Linus Torvalds. The scarcity of good leaders is one of the growth-
inhibiting factors in open source enterprises.

Prospects
The open source phenomenon raises many interesting questions. Its
proponents regard it as a paradigmatic change where the economics of
private goods built on the scarcity of resources are replaced by the
economics of public goods where scarcity is not an issue. Critics argue
that open source software will always be relegated to niche areas; that it
cannot compete with their commercial opponents in terms of product
stability and reliability (Lewis, 1999). Moreover, they also argue that
open source projects lack the capability to innovate.
 The OSSS prospect sounds encouraging when the absence of direct pay
(compensations) and monetary rewards as well as property right claims
have never been a bottleneck for its pervasiveness. It has direct
implications on social welfare. Open source may hold key to the so-called
“software-crisis”. The flourishing of this model to the extent of a
significant market-share in absence of any marketing/advertising makes
the prospect even sounder. OSS having been known for operating
systems and development tools have already stepped into the arena of
entertainment applications’ development. Actively growing interaction
between academic institutions and the IT industry has contributed
significantly in research and development of such systems and the
progress is going great done. Open source is internet-based and hence
together with ICT (Information and Communication Technology) has a lot
of scope in terms of development and economics.

Conclusion
As an emerging approach the open source paradigm provides an effective
way to create a globally distributed development environment wherein
the community on a specific open source software project is interacting
constantly and providing feedback to activities such as defect
identification, bug fixing, new feature request, and support requests for
the further improvement. This activity is rewarded by peer recognition of
their work and immediate recognition through credit acknowledgement
creating a promotional influence on effective development practices
across the community.

Open Source Systems and Engineering… Iqbal, Quadri & Rasool

TRIM 7 (2) July - Dec 2011 196

Open source has its strengths and weaknesses. The strengths come from
its innovative development in and across a global development
community of user-turned-developer. The weaknesses stem from the
daring defiance of established and matured conventional software
engineering principles and practice. However, though a good mix of
strengths and weaknesses hold the open source in balance, the prospects
of this paradigm are promising. Fostering innovation to improve
productivity seems to be mission-statement of open source.

References
Dinkelacker, J., & Garg, P. (2001). Applying Open Source Concepts to a

Corporate Environment. In Proceedings of 1st Workshop on
Open Source Software Engineering, Toronto, May 15, 2001
Retrieved from
http://opensource.ucc.ie/icse2001

Edwards, K. (2000). Epistemic Communities, Situated Learning and Open
Source Software Development. Department of Manufacturing
Engineering and Management, Technical University of Denmark,
2000

Feller, J., and Fitzgerald, B. (2002). Understanding Open Source Software
Development, Addison-Wesley; London, 2002.

Feller, J., & Fitzgerald, B. (2000). A framework analysis of the open source
software development paradigm. In Proceedings of the 21st
Annual International Conference on Information Systems, pp.
58–69, Brisbane, Australia, 2000.

Gurbani, V. K., Garvert, A., & Herbsleb, J. D. (2005). A Case Study of Open
Source Tools and Practices in a Commercial Setting. In
Proceedings of the 5th Workshop on Open Source Software
Engineering, St. Louis, MO, May 17, 2005, pp. 24-29.

Open Souce. (n.d). The Open Source Definition. Open Source Initiative.
Retrieved from http://www.opensource.org

Hars, A., & Ou, S. (2001). Working for free?-Motivations of Participating
in Open Source Projects. In Proceedings of the 34

th
 Hawaii

International Conference on System science-2001
Jones, P. (2000). Brooks' Law and open source: The more the merrier?

IBM Developer Works, May 2000.
Kogut, B., & Metiu, A. (2001). Open Source Software Development and

Distributed Innovation. April 2001
Lakhani, K. R., & Hippel, E. Von. (2003). How open source software works:

“free” user-to-user assistance. Research Policy. 32 (6), 923–943.
Lewis, T. (1999). The open source acid test. Computer, 32 (2), 125-128.

doi:10.1109/2.745728

Open Source Systems and Engineering… Iqbal, Quadri & Rasool

TRIM 7 (2) July - Dec 2011 197

Lerner, J., & Tirole, J. (2002). Some simple economics of open source.
Journal of Industrial Economics. 50 (2),197–234.

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of
open source software development: Apache and Mozilla. ACM
Transactions on Software Engineering and Methodology. 11 (3),
309–346.

Nakakoji, K., Yamamoto Y., Nishinaka, Y., Kishida, K., & Ye. Y. (2002).
Evolution Patterns of Open-Source Software Systems and
Communities. In Proceedings of International Workshop on
Principles of Software Evolution (IWPSE 2002) (Orlando, FL,
2002), 76-85.

Raymond, E. S. (1999). The cathedral & the bazaar: Musings on Linux and
open source by an accidental revolutionary. Beijing: O'Reilly.

Raymond, E. S. (2001). The cathedral and the bazaar: Musings on Linux
and Open Source by an accidental revolutionary. Beijing: O'Reilly.

Torvalds, L. et al. (2001). Software Development as directed Evolution
Linux Kernel Mailing List, December 2001

West, J. (2003). How open is open enough? Melding proprietary and
open source platform strategies. Research Policy. 32 (7), 1259–
1285.

