
Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 116

Quality Practices in Open Source Software Development Affecting
Quality Dimensions

Sheikh Umar Farooq

S. M. K. Quadri
Abstract
Purpose: The quality of open source software has been a matter of debate for a
long time now since there is a little concrete evidence to justify it. The main
concern is that many quality attributes such as reliability, efficiency,
maintainability and security need to be carefully checked, and that fixing software
defects pertaining to such quality attributes in OSDM (Open Source Development
Model) can never be guaranteed fully. In order to diminish such concerns, we need
to look at the practices which affect these quality characteristics in OSS (Open
Source Software) negatively. This paper presents an exploratory study of the
quality dimensions and quality practices and problems in OSDM. An insight of
these problems can serve as a start point for improvements in quality assurance of
open source software.
Design/Methodology/Approach: A survey was administered based on existing
literature. On the basis of this survey those practices in OSDM are described which
affect quality attributes negatively in OSS.
Findings: The quality characteristics which should be taken into consideration to
select or evaluate OSS are presented. Furthermore, quality practices in OSDM
which affect the quality of OSS in a negative manner have also been highlighted.
Research Implications: Further research is suggested to identify other quality
problems not found in this paper and to evaluate the impact of different practices
on project quality.
Originality/Value: As a first step in the development of practices and processes to
assure and further improve quality in open software projects, in addition to
quality attributes, existing quality practices and quality problems have to be
clearly identified. This paper can serve as a start point for improvements in quality
assurance of open source software’s.
Keywords: Open Source Software; Software Quality; Quality Practices; Quality
Problems.
Paper Type: Survey Paper

Introduction

here are more than hundred thousand open source software of
varying quality. The OSS model has not only led to the creation of
significant software, but many of these software show levels of

quality comparable to or exceeding that of software developed in a
closed and proprietary manner (Halloran & Scherlis, 2002; Schmidt &
Porter, 2001). However, open source software also face certain

 Research Scholar. P. G. Department of Computer Sciences, University of Kashmir, Jammu
and Kashmir. 190 006. India. email: shiekh.umar.farooq@gmail.com
 Head. P. G. Department of Computer Sciences, University of Kashmir, Jammu and
Kashmir. 190 006. India. E-Mail: quadrismk@hotmail.com

T

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 117

challenges that are unique to this model. For example, due to the
voluntary nature of open source software projects, it is impossible to fully
rely on project participants (Michlmayr & Hill, 2003). This issue is further
complicated by the distributed nature because it makes it difficult to
identify volunteers who are neglecting their duties, and to decide where
more resources are needed (Michlmayr, 2004). While most research on
open source has focused and hyped popular and successful projects such
as Apache (Mockus, Fielding & Herbsleb, 2002) and GNOME (Koch &
Schneider, 2002), there is an increasing awareness that not all open
source software projects are of high quality. SourceForge, which is
currently the most popular hosting site for free software and open source
projects with over 95,000 projects, is not only a good resource to find
well maintained free software applications – there are also a large
number of abandoned projects and software with low quality (Howison
& Crowston, 2004). Some of these low quality and abandoned projects
may be explained in terms of a selection process given that more
interesting projects with a higher potential will probably attract a larger
number of volunteers, but it has also been suggested that project failures
might be related to the lack of project management skills (Senyard &
Michlmayr, 2004). Nevertheless, large and successful projects also face
important problems related to quality (Michlmayr & Hill, 2003;
Michlmayr, 2004; Villa, 2003). In order to ensure that open source
software remains a feasible model for the creation of mature and high
quality software suitable for corporate and mission-critical use, open
software quality assurance has to take these challenges and other quality
problems into account and find solutions to them. As a first step in the
development of practices and processes to assure and further improve
quality in open software projects, existing quality practices and quality
problems have to be clearly identified. To date however, only a few
surveys on quality related activities in open software projects (that too
mostly in successful OSS) have been conducted (Zhao & Elbaum, 2000;
Zhao, 2003). This paper presents an exploratory study of the quality
dimensions and quality practices and problems in open source software
based on existing literature.

I Software Quality and its Characteristics
Software quality is imperative for the success of a software project.
Boehm (1984) defines software quality as “achieving high levels of user
satisfaction, portability, maintainability, robustness and fitness for use”.
Jones (1985) refers to quality as “the absence of defects that would make
software either stop completely or produces unacceptable results”.
These definitions of software quality cannot be applied directly to OSS.
Unlike CSS, user requirements are not formally available in OSS. We can

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 118

evaluate the project and its program on a number of important
attributes. Important attributes include functionality, reliability, usability,
efficiency, maintainability, and portability. The benefits, drawbacks, and
risks of using a program can be determined from examining these
attributes. The attributes are same as with proprietary software, of
course, but the way we should evaluate them with OSS is often different.
In particular, because the project and code is completely exposed to the
world, we can (and should!) take advantage of this information during
evaluation. We can divide OSS into two major categories: Type- 1:
Projects that are developed to replicate and replace existing CSS software;
and Type-2: Projects initiated to create new software that has no existing
equivalent CSS software. Linux is an example of Type-1 software, which
was originally developed as a replacement for UNIX. Protégé, ontology
development software is an example of Type-2 software.
Existing quality models provide a list of quality carrying characteristics
that are responsible for high quality (or otherwise) of software. Software
quality is an abstract concept that is perceived and interpreted differently
based on one’s personal views and interests. To dissolve this ambiguity,
ISO/IEC 9126 provides a framework for the evaluation of software
quality. ISO/IEC 9126 is the standard of quality model to evaluate a single
piece of software (Software Engineering-Product Quality-Part 1, 2001;
Software Engineering-Product Quality-Part 2, 2001). ISO/IEC 9126
defines six software quality attributes, often referred to as quality
characteristics along with various sub-characteristics to evaluate the
quality of software as shown in Fig. 1.

Fig. 1: ISO 9126 Software Quality Model

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 119

 Functionality
Functionality refers to the capability of the software product to provide
functions which meet stated and implied needs when the software is
used under specified conditions. Functionality means the number of
functions must be available in software that fulfils the minimum usage
criteria of the user (Raja & Barry, 2005). ISO 9126 Model describe the
functionality attribute as “a set of attributes that bear on the existence of
a set of functions and their specified properties. The functions are those
that satisfy stated or implied needs”. This set of attributes characterizes
what the software does to fulfil needs, whereas the other sets mainly
characterizes when and how it does so (International Organization for
Standardization, 1991). It is fundamental characteristic of the software
development and it is close to the property of the correctness (Fenton,
1993). The specific functions that we need obviously depend on the kind
of program and our specific needs. However, there are also some general
functional issues that apply to all programs. In particular, we should
consider how well it integrates and is compatible with existing
components we have. If there are relevant standards, does the program
support them? If we exchange data with others using them, how well
does it do so? For example, MOXIE: Microsoft Office – Linux
Interoperability Experiment downloaded a set of representative files in
Microsoft Office format, and then compare how well different programs
handle them (Venkatesh et al, 2011). For Type-1 OSS there are no formal
functionality requirements, yet there will be a certain level of expectation
in terms of its functionality compared to an existing CSS. Type-1 OSS will
be considered of a high quality and new users will adopt Type-1 software,
if it provides the basic functionality of its CSS equivalent. In case of Type-
2 OSS, there is no existing software to derive functional requirements
from, thus new users will be defining such requirements according to
their own needs. The sub characteristics of functionality attribute
specified by Punter, Solingen & Trienekens (1997) are as:

 Accuracy
This refers to the correctness of the functions i.e. to provide the right or
agreed results or effects with the needed degree of precision. e.g. an
ATM may provide a cash dispensing function but is the amount correct?

 Compliance
Where appropriate certain industry (or government) laws and guidelines
need to be complied with, i.e. SOX. This sub characteristic addresses the
compliant capability of software.

 Interoperability
A given software component or system does not typically function in
isolation. This sub characteristic concerns the ability of a software
component to interact with other components or systems.

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 120

 Security
This sub characteristic relates to unauthorized access to the software
functions (programs)/data.

 Suitability
This characteristic refers to the appropriateness (to specification) of the
functions of the software.

 Reliability
Reliability refers to the capability of the software product to maintain its
level of performance under stated conditions for a stated period of time.
The reliability factor is concerned with the behavior of the software. It is
the extent to which it performs its intended functions with required
precision. The software should behave as expected in all possible states
of environment. Although OSS is available free of cost, yet such software
needs to have a minimum operational reliability to make it useful for any
application. Many of the open source projects do not have resources to
dedicate to accurate testing or inspection so that the reliability of their
products must rely on community's reports of failures. The reports stored
in the so-called bug tracking systems, are uploaded by the community,
and moderated by internal members of the open source project. Reports
are archived with various pieces of information including the date of
upload and the description regarding the failure. What information can
be collected from these repositories and how to mine them for reliability
analysis is still an open issue (Li, Herbsleb & Shaw, 2005; Godfrey &
Whitehead, 2009). Problem reports are not necessarily a sign of poor
reliability - people often complain about highly reliable programs,
because their high reliability often leads both customers and engineers to
extremely high expectations. Indeed, the best way to measure reliability
is to try it on a "real" work load. Reliability has a significant effect on
software quality, since the user acceptability of a product depends upon
its ability to function correctly and reliably (Samoladas & Stamelos, n.d).
ISO 9126 defines reliability as “a set of attributes that bear on the
capability of software to maintain its performance level under stated
conditions for a stated period of time” (International Organization for
Standardization, 1991). Further, sub characteristics of reliability attribute
stated by Punter, Solingen & Trienekens (1997) are as:

 Fault Tolerance
The ability of software to withstand and maintain a specified level of
performance in case of software failure.

 Maturity
The Capability of the software product to avoid failures, as a result of
faults in the software. It is refined into an attribute Mean Time to Failure
(MTTF).

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 121

 Recoverability
Ability to bring back a failed system to full operation, including data and
network connections.

 Efficiency
Efficiency refers to the capability of the software product to provide
appropriate performance, relative to the amount of resources used, under
stated conditions. According to the ISO Model, efficiency is “a set of
attributes that bear on the relationship between the software's
performance and the amount of resources used under stated conditions”
(International Organization for Standardization, 1991). Efficiency
describes that the response of the software should be faster in the form of
any input. The sub characteristics of efficiency attribute are as (Punter,
Solingen & Trienekens, 1997):

 Resource Behavior
Amount and type of resources used and the duration of such use in
performing its function. It involves the attribute complexity that is
computed by a metric involving size (space for the resources used and
time spent using the resources).

 Time Behavior
The capability of the software product to provide appropriate response
time, processing time and throughput rates when performing its function
under stated conditions. It is an attribute that can be measured for each
functionality of the system.
 Usability
Usability refers to the capability of the software product to be
understood, learned, used and attractive to the user, when used under
specified conditions (the effort needed for use). ISO 9126 describe the
usability attribute as “a set of attributes that bear on the effort needed
for use and on the individual assessment of such use by a stated or
implied set of users” (International Organization for Standardization,
1991). The usability of open source software is often regarded as one
reason for this limited distribution. The usability problem in most OSS is
because of the following reasons:

 Developers are not users so they usually do not take user
perception into consideration.

 Usability experts do not get involved in OSS projects

 The incentives in OSS work better for improvement of
functionality than usability

 Usability problems are harder to specify and distribute than
functionality problems

 Design for usability really ought to take place in advance of any
coding

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 122

 Open source projects lack the resources to undertake high
quality usability work

 OSS development is inclined to promote power over simplicity
 It's important to note that to improve usability many OSS programs are
intentionally designed into at least two parts: an "engine" that does the
work and a “GUI” that lets users control the engine through a familiar
point and click interface (fragmentation). This division into two parts is
considered an excellent design approach; it generally improves reliability,
and generally makes it easier to enhance one part. Sometimes these
parts are even divided into separate projects: The "engine" creators may
provide a simple command line interface, but most users are supposed to
use one of the available GUIs available from another project. Thus, it can
be misleading if you are looking at an OSS project that only creates the
engine - be sure to include the project that manages the GUI, if that
happens to be a separate sister project. In many cases an OSS user
interface is implemented using a web browser. This actually has a
number of advantages: usually the user can use nearly any operating
system or web browser, users don't need to spend time installing the
application, and users will already be familiar with how their web
browser works (simplifying training). However, web interfaces can be
good or bad, so it's still necessary to evaluate the interface's usability.
The sub characteristics of the usability attribute are as (Punter, Solingen
& Trienekens, 1997):

 Learn ability
Learning effort for different users, i.e. novice, expert, casual etc.

 Operability
 Ability of the software to be easily operated by a given user in a given
environment.

 Understandability
Determines the ease of which the systems functions can be understood,
relates to user mental models in Human Computer Interaction methods.
 Portability
Portability refers to the capability of the software product to be
transferred from one environment to another. The environment may
include organizational, hardware or software environment. ISO 9126
Model defines the portability attribute as “A set of attributes that bear on
the ability of software to be transferred from one environment to
another (including the organizational, hardware, or software
environment)” (International Organization for Standardization, 1991).
Portability is also a main issue of today and with respect to it, Open
Source Software could run and give better results on different platforms
(Loannis & Stamelos, 2011). From its early days, portability has been a
central issue in OSS development. Various OSS systems have as first

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 123

priority the ability of their software to be used on platforms with
different architectures. Here, we have to stress on important fact, which
originates from the nature of OSS, and helps portability, namely the
availability of the source code of the destination software. If the source
code is available, then it is possible for the potential developer to port an
existing OSS application to a different platform than the one it was
originally designed for. Perhaps the most famous OSS, the Linux kernel,
has been ported to various CPU architectures other than its original one,
the x86. In the end, evaluating usability requires hands-on testing. The
sub characteristics of portability attribute are as (Punter, Solingen &
Trienekens, 1997):

 Adaptability
Characterizes the ability of the system to change to new specifications or
operating environments.

 Install ability
Characterizes the effort required to install the software in a specified
environment.

 Replaceability
The capability of the software product to be used in place of another
specified software product for the same purpose in the same
environment.
 Maintainability
Maintainability refers to the capability of the software product to be
modified. Modifications may include corrections, improvements or
adaptations of the software to changes in the environment and in the
requirements and functional specifications (the effort needed to be
modified).Maintainability in general refers to the ability to maintain the
system over a period of time. This will include ease of detecting, isolating
and removing defects. Additionally, factors such as ease of addition of
new functionality, interface to new components, programmers ability to
understand existing code and test team’s ability to test the system
(because of option like test instructions and test points) will enhance the
maintainability of a system. ISO 9126 defines it as “A set of attributes that
bear on the effort needed to make specified modifications (which may
include corrections, improvements, or adoptions of software to
environmental changes and changes in the requirements and functional
specifications)” (International Organization for Standardization, 1991).
Maintainability of OSS projects is a factor that was one of the first to be
investigated by the OSS literature. This was done mainly because OSS
development emphasizes on the maintainability of the software released.
Making software source code available over the Internet allows
developers from all over the world to contribute code, adding new
functionality (parallel development) or improving present one and

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 124

submitting bug fixes to the present release (parallel debugging). A part of
these contributions are incorporated into the next release and the loop
of release, code submission/bug fixing, incorporation of the submitted
code into the current and new release is continued. This circular manner
of OSS development implies essentially a series of frequent maintenance
efforts for debugging existing functionality and adding new one to the
system. These two forms of maintenance are known as corrective and
perfective maintenance respectively.
Maintenance is a huge cost driver in software projects. OSS is
downloaded and used by a global community of users. There are no face-
to-face interactions among the maintainers of the software. They have to
rely upon the documentation within the source code and on
communication through message boards. Therefore OSS is required to be
highly maintainable. Lack of proper interface definition, structural
complexity and insufficient documentation in an existing version of OSS
can discourage new contributions. Since participation is voluntary, low
maintainability will generate minimum participation of active users and
hence will have a negative effect on quality. The sub characteristics of the
maintainability are as (Punter, Solingen & Trienekens, 1997):

 Changeability
It refers to the capability of the software product to enable a specified
modification to be implemented. It also characterizes the amount of
effort to change a system.

 Stability
The capability of the software product to avoid unexpected effects from
modifications of the software (the risk of unexpected effect of
modifications)

 Testability
Characterizes the effort needed to verify (test) a system change.

 Analyzability
It characterizes the ability to identify the root cause of a failure within the
software.
Different users have different expectations of the same software and
user’s expectations of software evolve with time. For instance, some
users may view performance and reliability as the key features of
software, while others may consider ease of installation and maintenance
as key features of the same software. Therefore, software applications
today must do more than just meet technical specifications; they must be
flexible enough to meet the varying needs of a diverse user base and
provide reasonable expectations of future enhancements. The last five
characteristics are not related to the task performed by the software and
therefore are regarded as non-functional attributes. In many cases
though software requirements and testing methodologies are mostly

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 125

focused on functionality and pay little if any attention to non-functional
requirements. Since nonfunctional requirements affect the perceived
quality of software (quality in use), failure to meet them often leads to
late changes and increased costs in the development process. For
example Reliability is a non-functional requirement that needs to be
addressed in every software project. Therefore badly-written software
may be functional, but not a reliable one.

II Quality Problems under Open Source Model
Although many high profile cases of successful OSSD projects exist (e.g.,
Apache, OpenOffice, PHP), the harsh reality is that the majority of OSS
projects are of low quality. No doubt open source practices have been
remarkable success as can be seen in some successful OSS, we believe
there are several areas where there are opportunities for improvement.
A commonly cited reason for the failure of OSS projects to reach a
maturity level is in coordination of developers and project management,
leading to some duplication of efforts by multiple developers, inefficient
allocation of time and resources, and lack of attention to software
attributes such as ease of use, documentation, and support, all of which
impact conformance to specifications. Only few projects have explicit
documentation describing ways of contributing to and joining a project.
One more critical problem due to voluntary nature of open source is that,
reliance on project participants can never be guaranteed (Michlmayr &
Hill, 2003). Regarding to its distributed nature issues like to identify who
gets what to be done or to decide where more resources to break
bottleneck need to be examined (Michlmayr, 2004). Following issues
usually lead to low quality software’s under OSDM:

 Missing or Incomplete Documentation
Documentation is necessary for every project. Programmers and users
have always criticized projects which lacks documentation regarding
development practices (Michlmayr, Hunt & Probert, 2005). A study in QA
reveals that over 84% of the respondents prepare a ‘‘TODO’’ list including
list of pending features and open bugs. 62% build installation and
building guidelines, 32% projects have design documents, and 20% have
documents to plan releases including date and content (Zhao, 2003).
Most of the open source projects / software’s have little or no
documentation. However, some projects with a large number of
contributors have good documentation about coding styles and code
commit (Michlmayr, Hunt & Probert, 2005). Lack of documentation
reduces the motivation of new users and programmers, because they
always confront the difficulty to understand the project, whatever in
order to make usage or improvement. New developers, who would like to

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 126

participate into a project potentially, have to understand a part of the
project well enough (Ankolekar, Herbsleb & Sycara, 2003). Volunteers
may like to contribute in an area but they might not know how to start
and where to start without proper documentation. The lack of developer
documentation also implies that there is no assurance that everyone
follows the same techniques and procedures. At the very beginning of
Mozilla project, the community has faced problem to attract new
developers, the situation did slow down the proceeding of project. After
more well-formed documentations and tutorials were provided, the
number of participants significantly raised (Mockus, Fielding & Herbsleb,
2002). Due to the nature of the open source less attraction to users and
developers may leads to low quality product or even abend of project
(Zhao, 2003). A survey, which explored QA activities in open source,
concluded in that OS project starts regularly without a planning (Zhao &
Elbaum, 2000). While there is no specific definition of program, the
program varies regularly during the development process. Worse off,
those changes are most poorly recorded in documentation.
Undocumented planning and program changes make the measure and
validation of end product impossible.

 Problems in Collaboration
Software development is an interactive behaviour, often with tight
integration and interdependencies between modules, and therefore
requires a substantial amount of coordination and communication
between developers if they are to collaborate on features (Ankolekar,
Herbsleb & Sycara, 2003). Strong user involvement and participation
throughout a project is a central view of OSSD. In some projects, there
are problems with coordination and communication which can have a
negative impact on project quality. It is more difficult to achieve
coordination and agreeing to goals in OSS development than in closed
source software development. Sometimes it is not clear who is
responsible for a particular area and therefore things cannot be
communicated properly. There may also be duplication of effort and a
lack of coordination related to the removal of critical bugs. Some features
may for example be duplicated under open-source development because
there is some chance that developers with the same needs will not meet
– or will not agree on their objectives and methods when they meet and
will end-up developing the same types of features independently
(forking). In traditional development team, developers can work effective
together, as long as the team members understand with each other. Due
to convenient communications possibility those team tends to advance
efficiently (Thayer & McGetrick, 1993).Since the team members may
cooperate on module or single one feature, to be aware of the activities

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 127

of cooperating members is important (Ankolekar, Herbsleb & Sycara,
2003). Individuals and small teams take the advantages of convenient
communication and simpler decision method. In any case, the potential
for collaborative and group maintenance in successfully resolving a
serious quality assurance issue is obvious and its importance and
prominence in successful projects, in one form or another, seems like a
good possibility (Michlmayr & Hill, 2003).

 Lack of global view of system constraints
Large-scale open-source projects often have a large number of
contributors from the user community (i.e., the periphery). When these
users encounter problems, they may examine the source code,
propose/apply fixes locally, and then submit the results back to the core
team for possible integration into the source base. Often these users in
the periphery have much less knowledge of the entire architecture of an
open-source software system than the core developers. As a result, they
may lack a global view of broader system constraints that can be affected
by any given change, so their suggested fixed may be inappropriate.

 Dependence on Participants
No participants in OSS can be held responsible; the strong reliance on
individual developers comes to be a consideration of quality assurance.
It's a conflict that a project expects predictability and reliability from
participants, who claims to be irresponsible for the project (Raymond,
1999). A large user group is usually the fundamental of open source
project (Zhao, 2003). Without new volunteers the project seemed hard to
proceed, because when project begins, it also starts losing participants.
No member is obligated to contribute until the end of project (Raymond,
1999), developers are free to decide, if stay with project or just leave. For
open source project, regular demand on new developers keep itself
proceeding steadily. A problem some projects face, especially those that
are not very popular, is attracting volunteers. A study has confirmed that
unlike big and mature projects, small projects may not receive much
feedback from developers and co-users (Mockus, Fielding & Herbsleb,
2002). There are usually many ways of contributing to a project, such as
coding, testing or triaging bugs. However, many projects only find
prospective members who are interested in developing new source code.
As a result, developers have to use a large portion of their time for tasks
other people could easily handle. Few contributors are interested in
helping with testing, documentation and other activities. These are vital
activities, particularly as projects mature and need to be maintained and
updated by new cohorts of developers. Good documentation, tutorials,
development tools, and a reward and recognition culture facilitate the
creation of a sustainable community.

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 128

 Unsupported Code
One of the unsolved problems is how to handle code that has previously
been contributed but which is now unmaintained. A contributor might
submit source code to implement a specific feature or a port to obscure
hardware architecture. As changes are made by other developers, this
particular feature or port has to be updated so that it will continue to
work. Unfortunately, some of the original contributors may disappear
and the code is left unmaintained and unsupported. Lead developers face
the difficult decision of how to handle this situation.

 Release Problems
Release management is one of the most important controller to ensure
the quality of open source software. The state of release management
guidelines remains remarkably informal since the beginning of open
source development (Erenkrantz, 2003). Carefully defined criteria are
needed to regulate the release management. Oftentimes, release
manager are adopted in decentralized open source model to fit the
rapidly scaled project dimensions (Zhao, 2003). Under open source, it's
recommended to release often and release early (Raymond, 1999). The
argument behind this principle is that, users will take the responsibility to
find the bugs. It has been confirmed that a good part of debugging tasks
are shifted to users (Zhao, 2003). But as new versions are frequently
released with poorly tested by core team, users burden the most tasks of
debugging. The activities of testing increase, the quality of program gets
worse (Hendrickson, 2001). Though software quality investments can
reduce overall software cycle costs by minimizing rework later on, many
software manufacturers sacrifice quality in favor of other objectives such
as shorter development cycles and meeting time constraints. As one of
the manager said, "I would rather have it wrong than have it late" (Paulk,
Weber, Curtis & Chrissis, 1994). In contrast traditional conception of
software quality is centred on a product-centric, conformance view of
quality (Prahalad & Krishnan, 1999). Absence of static testing on
developer side delivers much more bugs as usually can be caught by a
number of users. Often it turns out to be impossible for developers to
keep up with a mass of bug reports. Release may be frequently
performed, when every claimed stable version fulfills the settled release
qualifications. Otherwise, it must be labeled as unstable version. It can be
hard, however, to ensure consistent quality of open-source software due
to the short feedback loops between users and core developers, which
typically result in frequent “beta” releases, e.g., several times a month.
Although this schedule satisfies end-users who want quick patches for
bugs they found in earlier betas, it can be frustrating to other end-users
who want more stable, less frequent software releases. In addition to our

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 129

own experiences, Gamma describes how the length of the release cycles
in the Eclipse frame-work affected user participation and eventually the
quality of the software (Gamma, 2005).

 Version Authorization
The many different commercial versions of Linux already pose a
substantial problem for software providers developing for the Linux
platform, as they have to write and test applications developed for these
various versions. The availability of source code often encourages an
increase in the number of options for configuring and sub setting the
software at compile and runtime. Although this flexibility enhances the
software’s applicability for a broad range of use cases, it can also
exacerbate QA costs due to a combinatory increase in the QA space.
Moreover, since open-source projects often run on a limited QA budget
due to their minimal/non-existent licensing fees, it can be hard for core
developers to validate and support large numbers of versions and
variants simultaneously, particularly when regression tests and
benchmarks are written and run manually. Smith reports an exchange
with an IT manager in a large Silicon Valley firm who lamented, “Right
now, developing Linux software is a nightmare, because of testing and
QA—how can you test for 30 different versions of Linux?” (Feller, et al,
2005).

 Testing and Bug Reporting
The study of 200 OSS projects discovered that

 fewer than 20 percent of OSS developers use test plans;

 only 40 percent of projects use testing tools, although this
increases when testing tool support is widely available for a
language, such as Java; and

 less than 50 percent of OSS systems use code coverage concepts
or tools.

 Larger projects do not spend more time in testing than smaller
projects.

OSS development clearly doesn’t follow structured testing methods. The
methodology an OSS project adopts will depend largely on the available
expertise, resources, and sponsorship. Formal testing techniques and test
automation are expensive and require sponsorship. Some high-profile
open source projects can achieve this, but most don’t, so the user base is
often the only choice (Aberdour, 2007). As more users with few technical
skills use free software, developers see an increase in useless or
incomplete bug reports. In many cases, users do not include enough
information in a bug report or they file duplicate bug reports. Such
reports take unnecessary time away from actual development work.
Some projects have tried to write better documentation about reporting

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 130

bugs but they found that users often do not read the instructions before
reporting a bug. Many popular open-source projects (such as GNU GCC,
CPAN, Mozilla, the Visualization Toolkit, and ACE+TAO) distribute
regression test suites that end users can run to evaluate the success of an
installation on a user’s platform. Users can – but frequently do not – re-
turn the test results to project developers. Even when results are
returned to core developers, however, the testing process is often
undocumented and unsystematic, e.g., core developers have no record of
what configurations were tested, how they was tested, or what the
results were, which loses crucial QA-related information. Moreover,
many QA configurations are executed redundantly by thousands of users
(e.g., on popular versions of Linux or Windows), whereas others are never
executed at all (e.g., on less widely used operating systems).

 Configuration Management
 Many free software and open source projects offer a high level of
customization. While this gives users much flexibility, it also creates
testing problems. It is very difficult or impossible for the lead developer
to test all combinations so only the most popular configurations tend to
be tested. It is quite common that, when a new release is made, users
report that the new version broke their configuration. Well-written open-
source software (e.g., based on GNU autoconf) can be ported easily to a
variety of OS and compiler platforms. In addition, since the source is
avail-able, end-users can modify and adapt their source base readily to fix
bugs quickly or to respond to new market opportunities with greater
agility. Support for platform-independence, however, can yield the
daunting task of keeping an open-source source software base
operational despite continuous changes to the underlying platforms. In
particular, since developers in the core may only have access to a limited
number of OS/compiler configurations, they may release code that has
not been tested thoroughly on all platform configurations on which users
want to run the software.
Although in some cases OSS seems to do better than closed source
software, there are many things that need to be to be improved and
further expanded, so that we avoid typical problems that arise from
practices usually employed in OSS. To achieve the maturity level and to
produce high quality open source software’s one should also employ
proved practices and methods usually employed in closed source
software development in beneficial manner. Aberdour (2007) compares
quality management practices in open source and closed source software
development as shown in Table 1. We should strive to employ these
proven practices in all types of projects whether small or large to achieve
high quality and matured Open Source Software.

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 131

Table 1: Quality Management in Open Source & closed Source
Closed Source Open Source

Well-defined developed methodology Development methodology often not
defined or documented

Extensive project documentation Little project documentation

Formal, structured testing and quality
assurance methodology

Unstructured and informal testing and
quality assurance methodology

Analysts define requirements Programmer define requirements

Formal Risk assessment process – monitored
and managed throughout project

No formal risk assessment process

Measurable goals used throughout project Few measurable goals

Defect discovery from black-box testing as
early as possible

Defect discovery from black-box testing
late in the process

Empirical evidence regarding quality routinely
to aid decision making

Empirical evidence regarding quality isn’t
collected

Team members are assigned work Team members choose work

Formal design phase is carried out and signed
off before programming starts

Projects often go straight to programming

Much effort put into project planning and
scheduling

Little project planning or scheduling

Conclusion and Future Work
OSS quality is an open issue and it should continue striving for even
better quality levels if it has to outperform traditional, closed source
development and target corporate and safety critical systems. The quality
of selected software and the standards of evaluating the quality of OSS
are often wrongly defined. Therefore, in this paper the quality
characteristics which should be taken into consideration to select or
evaluate OSS are also presented. The paper also presents insights into
quality practices of open source software projects which affects the
quality of OSS in a negative manner. Avoiding such practices and using
proven quality management practices can result in high quality OSS.
Further research is suggested to identify other quality problems not
found in this paper and to evaluate the impact of different practices on
project quality.

References
Aberdour, M. (2007). Achieving Quality in Open Source Software. IEEE

Computer Society. 24 (1), 58-64. doi: 10.1109/MS.2007.2
Ankolekar, A., Herbsleb, J.D., & Sycara, K. (2003). Addressing Challenges

to Open Source Collaboration with the Semantic Web. Retrieved
from

 http://www.cs.cmu.edu/~anupriya/papers/icse2003.pdf
Boehm, B. W. (1984). Software Engineering Economics. IEEE Transactions

on Software Engineering. 10 (1), 4-21. doi:
10.1109/TSE.1984.5010193

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 132

Erenkrantz, J.R. (2003). Release Management within Open Source
Projects. Retrieved from

 http://www.erenkrantz.com/Geeks/Research/Publications/Relea
seManagement.pdf

Feller, J., et al (Eds.)(2005). Perspectives on free and open source
software. Cambridge, Mass: MIT.

Fenton, N. E. (1993). Software Metrics: A Rigorous Approach. London:
Chapman and Hall.

Gamma, E. (2005). Agile, open source, distributed, and on-time: inside
the eclipse development process. Retrieved from

 http://www.inf.fu-berlin.de/inst/ag-se/teaching/S-
BSE/034_Eclipse-process.pdf

Godfrey, M. W., & Whitehead, J. (2009). Proceedings of the 2009 6th IEEE
International Working Conference on Mining Software
Repositories, Vancouver Canada, May 16-17.

Halloran, T. J., & Scherlis, W. L. (2002). High quality and open source
software practices. Retrieved from

 http://flosshub.org/system/files/HalloranScherlis.pdf
Hendrickson, E. (2001). Better Testing – Worse Quality? In International

Conference on software Management & Applications of Software
Measurement, February 12-16, 2001 San Diego, CA, USA

Howison, J., & Crowston, K. (2004). The perils and pitfalls of mining
SourceForge. Retrieved from

 http://msr.uwaterloo.ca/papers/Howison.pdf
International Organization for Standardization. (1991). Information

technology-Software product evaluation: Quality characteristics
and guidelines for their use. Berlin: Beuth-Verlag: ISO/IEC.

Jones, C. L. (1985). A Process-Integrated Approach to Defect Prevention.
IBM Systems Journal. 24 (2), 150-167. doi:10.1147/sj.242.0150

Koch, S., & Schneider, G. (2002). Effort, cooperation and coordination in
an open source software project: GNOME. Information Systems
Journal. 12 (1), 27–42. doi: 10.1046/j.1365-2575.2002.00110.x

Li, P.L., Herbsleb, J., & Shaw, M. (2005). Forecasting field defect rates
using a combined time-based and metrics-based approach: a
case study of OpenBSD. 16th IEEE International Symposium on
Software Reliability Engineering (ISSRE) (pp. 193-202).
Washington, DC, USA: IEEE Computer Society. doi:
10.1109/ISSRE.2005.19

Michlmayr, M. (2004). Managing volunteer activity in free software
projects. In Proceedings of the 2004 USENIX Annual Technical
Conference (pp. 39-33), FREENIX Track, Boston, MA: USENIX
Association. Retrieved from

 http://dl.acm.org/citation.cfm?id=1247415.1247454

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 133

Michlmayr, M., & Hill, B. M. (2003). Quality and the reliance on
individuals in free software projects. In Proceedings of the 3rd
Workshop on Open Source Software Engineering (pp. 105–109).
Portland, OR, USA: ICSE.

Michlmayr, M., Hunt, F., & Probert, D. (2005). Quality Practices and
Problems in Free Software Projects. In Proceedings of the First
International Conference on Open Source Systems Geneva, 11th-
15th July (pp. 24-28)

Mockus, A. R., Fielding, T., & Herbsleb, J. D. (2002). Two case studies of
open source software development: Apache and Mozilla. ACM
Transactions on Software Engineering and Methodology. 11 (3),
309–346. doi:10.1145/567793.567795

Paulk, M. C, Weber, C., Curtis, W., & Chrissis, M. (1994). The Capability
Maturity Model: Guidelines for Improving the Software Process.
Reading, Mass: Addison-Wesley.

Prahalad, C. K., & Krishnan, M. S. (1999 September). The New Meaning of
Quality in the Information Age. Harvard Business Review. 77 (5),
109-118. Retrieved from

 http://hbr.org/1999/09/the-new-meaning-of-quality-in-the-
information-age/ar/1

Punter, T., Solingen,R.V., & Trienekens, J. (1997). Software Product
Evaluation. 4th Conference on Evaluation of Information
Technology (30-31 Oct. 1997). MB Eindhoven Netherland.

Raja, U., & Barry, E. (2005). Investing Quality in Large –Scale Open Source
Software. U.S.A: Texas A&M University.

Raymond, E. S. (1999). The Cathedral and the Bazaar. Sebastopol, CA:
O’Reilly & Associates.

Samoladas, I., & Stamelos, I. (n.d). Assessing Free/Open Source Software
Quality. Retrieved from

 http://ifipwg213.org/system/files/samoladasstamelos.pdf
Schmidt, D. C., & Porter, A. (2001). Leveraging open-source communities

to improve the quality & performance of open-source software.
In Proceedings of the 1st Workshop on Open Source Software
Engineering. Toronto, Canada: ICSE.

Senyard, A., & Michlmayr, M. (2004). How to have a successful free
software project. In Proceedings of the 11th Asia-Pacific
Software Engineering Conference (pp. 84-91). Busan, Korea: IEEE
Computer Society.

Software Engineering-Product Quality-Part 1. (2001, June). Software
Engineering-Product Quality-Part 1: Quality Model. ISO/IEC
9126-1.

Quality Practices in Open Source Software… Farooq & Quadri

TRIM 7 (2) July - Dec 2011 134

Software Engineering-Product Quality-Part 1. (2001, June). Software
Engineering-Product Quality-Part 1: Quality Model. ISO/IEC
9126-2.

Thayer, R.H., & McGettrick, A.D. (1993). (Eds.), Software Engineering: A
European Perspective. IEEE Computer Society Press, Los
Alamitos, CA.

Venkatesh, C., et al. (2011). Quality Prediction of Open Source Software
for e-Governance Project. Retrieved from
www.csi-sigegove.org/emerging_pdf/16_142-151.pdf

Villa, L. (2003). Large free software projects and Bugzilla. In Proceedings
of the Linux Symposium (July 23-26, 2003) Ottawa, Canada, pp.
447-456.

Zhao, L. (2003). Quality assurance under the open source development
model. Journal of Systems and Software. 66 (1), 65–75.
doi:10.1016/S0164-1212(02)00064-X

Zhao, L., & Elbaum, S. (2000). A survey on quality related activities in
open source. SIGSOFT Software Engineering Notes, 25 (3), 54–
57. doi: 10.1145/505863.505878

