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IMPORTANCE OF INITIAL VALUE IN EXPONENTIAL 
SMOOTHING METHODS 

Sedat ÇAPAR* 
Abstract 

Exponential smoothing is a very popular forecasting method for a wide range of 
time series data. There are two problems with exponential smoothing. First one is choosing 
smoothing constant. And second one is how to get initial value. In this paper importance of 
initial value and effects of it on the forecast is investigated and a cross table is constructed 
to help forecasters. 
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ÜSTEL DÜZLEŞTİRME YÖNTEMLERİNDE  

BAŞLANGIÇ DEĞERİNİN ÖNEMİ  

Öz 

Üstel düzleştirme çeşitli zaman serisi verileri için yaygın olarak kullanılan popüler 
bir tahmin yöntemidir. Üstel düzleştirme ile ilgili iki önemli problem mevcuttur. Birincisi, 
düzleştirme sabitinin değerine karar vermek. İkincisi de başlangıç değerini belirlemektir. 
Bu çalışmada başlangıç değerinin önemi ve tahmin üzerindeki etkisi araştırılmış ve 
araştırmacılara yardımcı olmak amacıyla bir çapraz tablo oluşturulmuştur. 

Anahtar Kelimeler: Üstel Düzleştirme, Basit Üstel Düzleştirme, Başlangıç Değeri. 

 
INTRODUCTION 

The exponential smoothing methods were developed by Brown and Holt 
unaware of each other (Brown, 1959; 1964; Holt, 1957). Roberts G. Brown was 
working for the US Navy when he was first form exponential smoothing (Gass and 
Harris, 2000). By the way, Charles C. Holt worked independently of Brown and 
developed exponential smoothing for additive trends and seasonal data. Later, an 
Office of Naval Research memorandum was created to document Holt’s original 
work (Holt, 1957). Many contributions were followed by different researchers 
(Pegels, 1969; Roberts, 1982; Abraham and Ledolter, 1983). 
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Makridakis and Hibon compared different time series methods using 111 
time series and concluded that simple methods like exponential smoothing did not 
performed worse than the advanced ones (Makridakis and Hibon, 1979). But their 
conclusion is not accepted by the majority of researchers. Then, M-Competition 
was launched by Makridakis to continue the empirical comparisons of time series 
(Makridakis et al., 1982). Another contribution came from Gardner and he 
published his first paper providing an exhaustive review of exponential smoothing 
(Gardner, 1985). 

After these efforts, the popularity of exponential smoothing methods 
started to increase. Up to first paper of Gardner many researchers opinion about 
exponential smoothing was to ignore it since it was a special case of ARIMA 
(Gardner, 2006). However, many works done since 1985 showed that exponential 
smoothing methods are optimal for wide variety of time series models. 

Makridakis and Hibbon continued with M2-Competition and M3-
Competition. Many of researchers have repeated the conclusion of M-Competition 
by adding some new methods (Geurts and Kelly, 1986; Clemen, 1989) using M-
Competition data (Lusk and Neves, 1984; Hill and Fildes, 1984; Koehler and 
Murphree, 1988) or using new data series (Armstrong and Collopy, 1992; 1993; 
Fildes et al., 1998). Al these studies showed the validity of four conclusions of M-
Competition. 

These works showed that simple methods like exponential smoothing is not 
worse than complicated once like ARIMA. Exponentinal smoothing methods are 
easy to calculate. Even not an expert person can calculate smoothing values and 
make forecast using simple computer programs like excel. On the other hand, the 
complicated methods like ARIMA need specialized computer programs and expert 
person to use them. 

Besides of its ease many contributions were made for different forecast 
profiles. These profiles (Gardner, 1985) are given in Figure 1. 

 

 

 

 

 

 

 

 

 



Importance of Initial Value…                      DEU Journal of GSSS, Vol: 17, Issue: 3 

293 

Figure 1: Forecast Profiles From Exponential Smoothing 
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There are a lot of methods for the forecast profiles above. Figure 2 contains 
standard equations of exponential smoothing (Gardner, 2006). These are extensions 
of the work of Brown, Holt and Winters (Brown, 1959; 1964; Holt, 1957; Winters, 
1960). “For each type of trend, there are two sections of equations: the first give 
recurrence forms and the second gives equivalent error-correction forms. 
Recurrence forms were used in the original work by Brown and Holt and are still 
widely used in practice, but error-correction forms are simpler” (Gardner, 2006). 

 

 

  

 



Çapar, S.                                                               DEÜ SBE Dergisi, Cilt: 17, Sayı: 3 

294 

Figure 2: Standard Exponential Smoothing Equations 

 
EXPONENTIAL SMOOTHING 

Exponential smoothing is probably the most widely used class of 
procedures for a wide variety of time series data in order to forecast the future. It 
weights past observations using exponentially decreasing weights. In other words, 
recent observations are given relatively more weight in forecasting than the older 
observations and these weights are automatically calculated by use of smoothing 
constants. There is no need to assign weights to each previous period.  
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In exponential smoothing, there are one or more parameters to be 
determined by the forecaster. These parameters assign the weights which are 
exponentially decreasing weights as the observations getting older. This is a 
desired situation because “future events usually depend more on recent data than 
on data from a long time ago” (Xie et al., 1997). This gives the power of adjusting 
an early forecast with the latest observation. In the case of moving averages, which 
is another technique of smoothing, the weights assigned to the observations are the 
same and equal to 1/ N so newest and oldest data have the same weights for 
forecasting. 

“There are also other different types of forecasting procedures but 
exponential smoothing methods are widely used in industry. Their popularity is due 
to several practical considerations in short-range forecasting” (Gardner, 1985): 

 equations are simple 

 parameters have some intuitive meaning 

 easy to compute 

 accuracy can be obtained easily 

There are 3 basic forms of exponential smoothing which are simple 
exponential smoothing, double exponential smoothing and triple exponential 
smoothing. 

Simple Exponential Smoothing 
Simple exponential smoothing is suitable for forecasting data with no trend 

and no seasonal component. The smoothing equation for simple exponential 
smoothing in recurrence form is given by 

௧ܵ =∝ ܺ௧ + (1−∝) ௧ܵିଵ 

where ௧ܵ  is the smoothing statistic (or smoothed value) and ∝ is the 
smoothing constant. It can be seen that the new smoothed value is the weighted 
sum of the current observation and the previous smoothed value. The weight of the 
most recent observation is ∝ and the weight of the most recent smoothed value is 
(1-∝). 

As a result, ௧ܵ  is the weighted average of all past observations and the 
initial value of  ܵ. The weights are decreasing exponentially depending on the 
value of parameter ∝ (smoothing constant). Figure 3 shows the weights given to 
observations when ∝ value is 0.3. These weights appear to decline exponentially 
when connected by a smooth curve. This is why it is called “exponential 
smoothing”. More weights given to most recent observations and weights decrease 
geometrically with age. 
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Figure 3: Weights Assigned to Observations when ∝ is 0.3 

 
Double Exponential Smoothing 

Double exponential smoothing is preferred when there is a trend in the 
data. There are different ways to overcome the trend in the data. Holt (Holt et al., 
1960) and Winters (Winters, 1960), uses two different parameters to smooth the 
level and trend of the series. The Brown models use one parameter to smooth both 
of them. The approach often used to determine updated estimates of a and b is 
known as double exponential smoothing. The specific formula for double 
exponential smoothing for two parameter is given by 

௧ܵ =∝ ܺ௧ + (1−∝)( ௧ܵିଵ + ܾ௧ିଵ) 

ܾ௧ = )ߛ ௧ܵ − ௧ܵିଵ) + (1 −  ௧ିଵܾ(ߛ

The first smoothing equation adjust ௧ܵ  directly for the trend of the previous 
period, ܾ௧ିଵ , by adding it to the last smoothed value of ௧ܵିଵ. 

Triple Exponential Smoothing 

Triple exponential smoothing is used if there is a trend and seasonality in 
the data. A third equation is introduced to care of the seasonality. The equations for 
triple exponential smoothing are given by 

௧ܵ =∝
ܺ௧

௧ିܫ
+ (1−∝)( ௧ܵିଵ + ܾ௧ିଵ) 

ܾ௧ = )ߛ ௧ܵ − ௧ܵିଵ) + (1 −  ௧ିଵܾ(ߛ

௧ܫ = )ߚ
ௌ

) + (1 − ௧ିܫ(ߚ   
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INITIAL VALUE 

As it seen from formulas exponential smoothing methods are recurring 
formulas. Each smoothed value is calculated as a weighted average of 
corresponding observation and previous smoothed value except ܵ which is called 
initial value or starting value. Recall simple exponential case, the formula is 

௧ܵ =∝ ܺ௧ + (1−∝) ௧ܵିଵ 

then ௧ܵିଵ can be written as 

௧ܵିଵ =∝ ܺ௧ିଵ + (1−∝) ௧ܵିଶ 

substituting ௧ܵିଵ  in first equation with its component ௧ܵ  can be written as 

௧ܵ =∝ ܺ௧ + (1−∝)[∝ ܺ௧ିଵ + (1−∝) ௧ܵିଶ] 

௧ܵ =∝ ܺ௧+∝ (1−∝)ܺ௧ିଵ + (1−∝)ଶ
௧ܵିଶ 

and replacing ௧ܵିଶ with its component we have 

௧ܵ =∝ ܺ௧+∝ (1−∝)ܺ௧ିଵ + (1−∝)ଶ[∝ ܺ௧ିଶ + (1−∝) ௧ܵିଷ] 

௧ܵ =∝ ܺ௧+∝ (1−∝)ܺ௧ିଵ + ܽ(1−∝)ଶܺ௧ିଶ + (1−∝)ଷ
௧ܵିଷ 

repeating the substitution for ௧ܵିଷ, ௧ܵିସ and so on up to ܵ finally we have 

௧ܵ =∝ ܺ௧+∝ (1−∝)ܺ௧ିଵ + ܽ(1−∝)ଶܺ௧ିଶ + ܽ(1−∝)ଷܺ௧ିଷ+ 
∝ (1−∝)ସܺ௧ିଷ + ⋯ +∝ (1−∝)௧ିଵܺଵ + (1−∝)௧ܵ 

can also be written like this 

௧ܵ =∝  (1 − ܺ௧ି(ߙ

௧ିଵ

ୀ

+ (1−∝)௧ܵ 

As it seen from last formula, ௧ܵ  is the weighted average of all past 
observations and the initial value ܵ. The weights are decrease exponentially 
depending on the value of parameter ∝ (smoothing constant). The value of the 
parameters ∝  and ܵ must be given by the forecaster to calculate the smoothed 
values. Depending on the chosen value of these parameters, accuracy of simple 
exponential smoothing may vary.  

Different methods for computing ܵ have been developed by a number of 
researchers. Brown’s original suggestion is simply using the mean of the data for 
ܵ. Other approaches are to use first observation or average of first 3 observations 
as ܵ. Ledolter and Abraham (Ledolter and Abraham, 1984) recommended 
backcasting to obtain ܵ. Another alternative with a limited number of data points 
is to use Bayesian methods to combine a prior estimate of the level with an average 
of the available data (Cohen, 1966), (Jonhson and Montgomery, 1974) and (Taylor, 
1981). 
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There are numerous of different approaches to use for ܵ. Therefore 
choosing ܵ is really important or if so knowing when it is important is studied in 
this paper. It is convenient to investigate effect of different initial values on real 
data from M-Competition.  For this purpose first MNC44 is selected from M-
Competition data and three different approaches are selected for ܵ as first 
observed value, average of first three observed values and average of all data and 
denoted by ܵ௫భ , ܵ௫̅య and ܵ௫̅ repectively. Number of observation is 126 and 
different values of ߙ is used. Forecast values and their differences are given in 
Table 1. F1, F2 and F3 denote the forecasts made when ܵ௫భ , ܵ௫̅య and ܵ௫̅  is used as 
initial value respectively.  

 Table 1: Forecasts and Their Differences for MNC44 

∝ F1 F2 F3 abs(F1-F2) abs(F1-F3) abs(F2-F3) 
0.1 2099.319 2099.319 2099.319 0.0000006 0.0003007 0.0003013 
0.2 2239.911 2239.911 2239.911 0.0000000 0.0000000 0.0000000 
0.3 2265.154 2265.154 2265.154 0.0000000 0.0000000 0.0000000 
0.4 2263.963 2263.963 2263.963 0.0000000 0.0000000 0.0000000 
0.5 2257.560 2257.560 2257.560 0.0000000 0.0000000 0.0000000 
0.6 2252.168 2252.168 2252.168 0.0000000 0.0000000 0.0000000 
0.7 2249.447 2249.447 2249.447 0.0000000 0.0000000 0.0000000 
0.8 2249.309 2249.309 2249.309 0.0000000 0.0000000 0.0000000 
0.9 2251.071 2251.071 2251.071 0.0000000 0.0000000 0.0000000 

The results in Table 1 shows that using different initial values do not have 
effect on the forecast made by exponential smoothing. This is of course due to 
large data size. Although small values of ∝ (ie, ∝= 0.1, 0.2 …) gives less weight to 
related observation and more weight to previous smoothed values, there still seems 
to be no effect of ܵ on the forecast made by starting different values for ܵ . We 
can conclude that ܵ loose its importance when n is big.  

The effect of ܵ must also be investigated when n is small. QNM6 in M-
competition has number of observations equal to 20. And it is used to see the 
effects of using different initial values when n is relatively small. Obtained results 
are shown in Table 2. This time it is possible to see some differences on forecasts 
for small values of ∝.  However, the only significant difference is observed for ∝ is 
equal to 0.1. The differences are very small for ∝ values 0.2, 0.3 and 0.4. And it is 
possible to conclude that there is no difference on the forecasts when ∝ is bigger 
than 0.4. 
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Table 2:  Forecasts and Their Differences for QNM6 
∝ F1 F2 F3 abs(F1-F2) abs(F1-F3) abs(F2-F3) 

0.1 282.917 283.039 285.405 0.1221144 2.4885180 2.3664035 
0.2 296.039 296.044 296.131 0.0045133 0.0919751 0.0874618 
0.3 298.617 298.617 298.619 0.0001073 0.0021872 0.0020799 
0.4 298.245 298.245 298.245 0.0000014 0.0000292 0.0000278 
0.5 297.698 297.698 297.698 0.0000000 0.0000002 0.0000002 
0.6 298.293 298.293 298.293 0.0000000 0.0000000 0.0000000 
0.7 300.559 300.559 300.559 0.0000000 0.0000000 0.0000000 
0.8 304.702 304.702 304.702 0.0000000 0.0000000 0.0000000 
0.9 310.830 310.830 310.830 0.0000000 0.0000000 0.0000000 

Now, it is expected that the effect of using different initial values will 
increase when n is getting smaller and smaller especially for the small values of ∝. 
If n is big then there is no effect. Now the question is that how big n is enough to 
think that there will be no difference. 

If we look at to the last form we obtained for ௧ܵ , initial value has a weight 
of (1−∝)௧. So two parameters ∝ and t define the weight of initial value ܵ. t is the 
number or observations theoretically starts from 1 and go to infinity and ∝ is the 
smoothing constant whose value between 0 and 1 which is chosen by the 
forecaster. It is possible to calculate weights assigned to initial value ܵ choosing 
different  ∝ values and number of observations.  

So, starting ∝ from 0.1 and incrementing by 0.1 up to 0.9 and for t starting 
from 1 and incrementing by one up to 20 then incrementing arbitrarily the weights 
assigned to initial value ܵ is obtained and shown in Table 3. Now we can conclude 
the followings using the results from Table 3. 

If the number of observations is big than weight assigned to initial value 
ܵ ݅s so small even for different values of ∝. Therefore initial value will not effect 
the forecast too much, so the forecaster may chose first observation as the initial 
value without worrying about it. 

If the number of observations is small, let say smaller than 20, than it 
becomes important with the chosen value of  ∝. Since the weight assigned to initial 
value is affected both the value of smoothed constant and number of observations, 
the value of ∝ is gaining importance when number of observations is smaller than 
20.  

If high values for ∝ are chosen than weight assigned to initial value is still 
so small. For example when t is 5 and ∝ is 0.9 then weight is equal to 0.00001. On 
the contrary if small values for ∝ are chosen when t is also small then weight 
assigned to initial value is also high. Therefore the value assigned by forecaster for 
unknown initial value ܵ will be effect the accuracy of the forecast for small sized 
data when small values for ∝ is chosen. 
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Table 3: Weights Assigned to ܵ for Different Values of ∝ and T. 
 ∝ 
t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 0.90000 0.80000 0.70000 0.60000 0.50000 0.40000 0.30000 0.20000 0.10000 
2 0.81000 0.64000 0.49000 0.36000 0.25000 0.16000 0.09000 0.04000 0.01000 
3 0.72900 0.51200 0.34300 0.21600 0.12500 0.06400 0.02700 0.00800 0.00100 
4 0.65610 0.40960 0.24010 0.12960 0.06250 0.02560 0.00810 0.00160 0.00010 
5 0.59049 0.32768 0.16807 0.07776 0.03125 0.01024 0.00243 0.00032 0.00001 
6 0.53144 0.26214 0.11765 0.04666 0.01563 0.00410 0.00073 0.00006 0.00000 
7 0.47830 0.20972 0.08235 0.02799 0.00781 0.00164 0.00022 0.00001 0.00000 
8 0.43047 0.16777 0.05765 0.01680 0.00391 0.00066 0.00007 0.00000 0.00000 
9 0.38742 0.13422 0.04035 0.01008 0.00195 0.00026 0.00002 0.00000 0.00000 
10 0.34868 0.10737 0.02825 0.00605 0.00098 0.00010 0.00001 0.00000 0.00000 
11 0.31381 0.08590 0.01977 0.00363 0.00049 0.00004 0.00000 0.00000 0.00000 
12 0.28243 0.06872 0.01384 0.00218 0.00024 0.00002 0.00000 0.00000 0.00000 
13 0.25419 0.05498 0.00969 0.00131 0.00012 0.00001 0.00000 0.00000 0.00000 
14 0.22877 0.04398 0.00678 0.00078 0.00006 0.00000 0.00000 0.00000 0.00000 
15 0.20589 0.03518 0.00475 0.00047 0.00003 0.00000 0.00000 0.00000 0.00000 
16 0.18530 0.02815 0.00332 0.00028 0.00002 0.00000 0.00000 0.00000 0.00000 
17 0.16677 0.02252 0.00233 0.00017 0.00001 0.00000 0.00000 0.00000 0.00000 
18 0.15009 0.01801 0.00163 0.00010 0.00000 0.00000 0.00000 0.00000 0.00000 
19 0.13509 0.01441 0.00114 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 
20 0.12158 0.01153 0.00080 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 
30 0.04239 0.00124 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
50 0.00515 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

100 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
250 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
1000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

 
CONCLUSION 

For the use of exponential smoothing methods it is required to assign some 
values to unknown parameters and initial value. Forecaster must first choose a 
proper value for smoothing constant and second set initial value to be able to 
calculate smoothed values and make forecast. These unknown values assigned by 
the forecaster effect the accuracy of forecast. 

It is obvious that the accuracy of forecast directly affected by the value of 
smoothing constant since it adjusts the weights given to observations and initial 
value. Therefore it is always important to choose a proper value for smoothing 
constant. 

 However, in this paper it is shown that initial value is not always have an 
influence on the forecast made by exponential smoothing methods. If the number 
of observations is very large than the weight assigned to initial value is very low 
therefore how to choose an initial value is not a problem. Forecaster may choose 
first observation as the value of initial value.  

On the other hand, it is important for small sized data but number of 
observations alone is not decisive. Number of observations and smoothed constant 
together have an important behavior on the weight assigned to initial value. If t is 
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small but ∝ is high then the weight assigned to initial value is still small. Weight 
assigned to initial value is high only when both t and ∝ is small therefore choosing 
a proper initial value is important if both of them have small values. 

The table constructed in this paper for different sample sizes and ∝ values 
can be used to determine weight assigned to initial value and practically decide 
whether or not the initial value will have an important effect on the forecast (Table 
3). 
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