

11

International Journal of

Science and Engineering Investigations vol. 1, issue 6, June 2012

ISSN: 2251-8843

Comparison of Evolution Strategy, Genetic Algorithm and Their

Hybrids on Evolving Autonomous Game Controller Agents

Hidehiko Okada
1
, Jumpei Tokida

2
, Yuki Fujii

3

1,2,3
Department of Intelligent Systems, Faculty of Computer Science and Engineering, Kyoto Sangyo University

(1 hidehiko@cc.kyoto-su.ac.jp)

Abstract- Researchers have been applying artificial/computa-
tional intelligence (AI/CI) methods to computer games. In this
research field, further researches are required to compare AI/CI
methods with respect to each game application. In this paper,
we report our experimental results on the comparison of two
evolutionary algorithms (evolution strategy and genetic
algorithm) and their hybrids, applied to evolving autonomous
game controller agents. The games are the CIG2007 simulated
car racing and the MarioAI 2009. In the application to the
simulated car racing, premature convergence of solutions was
observed in the case of ES, and GA outperformed ES in the last
half of generations. Besides, a hybrid which uses GA first and
ES next evolved the best solution among the whole solutions
being generated. This result shows the ability of GA in globally
searching promising areas in the early stage and the ability of
ES in locally searching the focused area (fine-tuning solutions).
On the contrary, in the application to the MarioAI, GA
revealed its advantage in our experiment, whereas the expected
ability of ES in exploiting (fine-tuning) solutions was not
clearly observed. The blend crossover operator and the
mutation operator of GA might contribute well to explore the
vast search space.

Keywords- evolutionary algorithm; autonomous game controller

agent; neuroevolution.

I. INTRODUCTION

Researchers have been applying artificial/computational
intelligence (AI/CI) methods to computer games, and reporting
their research results in conferences including IEEE
Conference on Computational Intelligence and Games (CIG)

1

and IEEE Congress on Evolutionary Computation (CEC)
2
. In

these conferences, competitions on autonomous game AI
agents have been held. For example, competitions on
Simulated Car Racing

3
, Mario AI

4
, Ms. Pac-Man

5
, etc., were

held in CIG 2011
6
. To develop high performance agents, AI/CI

methods such as artificial neural networks, fuzzy sets,
evolutionary algorithms, swarm intelligence and enforcement

1 http://www.ieee-cig.org/.
2 http://cec2011.org/.
3 http://cig.ws.dei.polimi.it/?page_id=175
4 http://www.marioai.org/
5 http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html
6 http://cilab.sejong.ac.kr/cig2011/?page_id=100

learning have been applied. In this research field, further
researches are required to compare AI/CI methods with respect
to each game application; to investigate which methods can
derive better agents than others for which application and why.

In this paper, we report our experimental results on the
comparison of two evolutionary algorithms (evolution strategy
(ES) [1] and genetic algorithm (GA) [2] and their hybrids
applied to evolving autonomous game controller agents. The
games are the CIG2007 simulated car racing and the MarioAI
2009. We select ES and GA because these are the
representatives of the evolutionary algorithms.

II. GAME APPLICATIONS

We selected the CIG2007 simulated car racing and the
MarioAI 2009 as the game applications because these games
provided sample controller agents (written in Java) on the
web

7,8
. The sample agents are neural network based ones; we

expect sample agents will perform well as we tune values of
their unit connection weights and unit biases. We apply
evolutionary algorithms to the tuning of the weights and the
biases. Training neural networks by means of evolutionary
algorithms is known as neuroevolutions [3,4]. Unlike training
with the back propagation algorithm, neuroevolutions do not
require training data sets and gradient information of error
functions.

A. CIG 2007 Simulated Car Racing

Fig.1 shows a screenshot of the CIG2007 simulated car
racing. An autonomous agent controls its associated car to
“visit as many way-points as possible in a fixed amount of
time [5].”

A starter kit has been provided on the web
9
. Samples of car

controller agents are included in simplerace/classes/

simplerace. The agents are provided as Java classes.
Source codes of the agents are also provided. We utilized the

agent RMLPController (simplerace/classes/

simplerace/RMLPController.class) in our research,
because the agent performed better than other sample agents in

7 http://julian.togelius.com/cig2007competition/
8 http://julian.togelius.com/mariocompetition2009/gettingstarted.php
9 http://julian.togelius.com/cig2007competition/simplerace.zip

International Journal of Science and Engineering Investigations, Volume 1, Issue 6, July 2012 12

www.IJSEI.com Paper ID: 10612-02 ISSN: 2251-8843

our experiment.

Figure 1. Screenshot of CIG2007 simulated car racing.

The following command starts car racing simulation
7
:

> java simplerace.Play evolved.xml

The argument of the simplerace.Play class, evolved.

xml, is an XML-formatted file. The XML file includes an

<object> element with which the agent class used as the
controller in the simulation is specified. For example, the
following example of description:

<object type="simplerace.RMLPController"

id="0">

denotes that the class simplerace.RMLPController is
used as the controller agent.

This RMLPController agent is implemented with a

recurrent multi-layer perceptron (RMLP); as the inputs, the
RMLP receives data of car environment captured by car
sensors, and the RMLP outputs data to actuate (control) its car.
Values of RMLP weights and biases are specified with

<array> elements in the XML file. Thus, better RMLP

Controller will be evolved as the values of <array>
elements are tuned. We experimentally compare the ability of
evolutionary algorithms and their hybrids on this

RMLPController neuroevolutions.

B. MarioAI 2009

Fig.2 shows a screenshot of Mario game played by a
MarioAI agent. An autonomous agent controls Mario to “win
as many levels (of increasing difficulty) as possible.”

8

A starter kit has been provided on the web
10

. Samples of

Mario controller agents are included in marioai/

classes/ch/idsia/ai. The agents are provided as Java
classes. Source codes of the agents are also provided. We

experimentally utilized the agent SmallSRNAgent

(marioai/classes/ch/idsia/ai/agents/ai/Sma

llSRNAgent.class) in this research.

10 http://julian.togelius.com/mariocompetition2009/marioai.zip

Figure 2. Screenshot of MarioAI 2009 game play.

The following command starts game play simulation
8
:

> java ch.idsia.scenarios.Play evolved.xml

The argument of the ch.idsia.scenarios.Play class,

evolved.xml, is an XML-formatted file. The XML file

includes an <object> element with which the agent class
used as the controller in the simulation is specified. For
example, the following example of description:

<object type="ch.idsia.ai.agents.ai.Small

SRNAgent" id="0">

denotes that the class ch.idsia.ai.agents.ai.Small

SRNAgent is used as the controller agent.

This SmallSRNAgent is implemented with a recurrent
multi-layer perceptron (RMLP); as the inputs, the RMLP
receives data of environmental state captured by Mario
sensors, and the RMLP outputs data to actuate (control) Mario.
Values of RMLP weights and biases are specified with

<array> elements in the XML file. Thus, better Small

SRNAgents will be evolved as the values of <array>
elements are tuned. We experimentally compare the ability of
evolutionary algorithms and their hybrids on this

SmallSRNAgent neuroevolutions.

III. APPLYING EVOLUTIONARY ALGORITHMS TO GAME

CONTROLLERS

A solution of the optimization problem is a 162 dimensional
real vector ⃗ = (x1, x2, …, x162) in the application to the
CIG2007 simulated car racing and a 405 dimensional real
vector ⃗ = (x1, x2, …, x405) in the application to the MarioAI

2009. Each xi is a variable for an <array> element in the
XML files.

A. Evolution Strategy

The steps of evolution by means of ES in our research are
shown in Fig.3.

International Journal of Science and Engineering Investigations, Volume 1, Issue 6, July 2012 13

www.IJSEI.com Paper ID: 10612-02 ISSN: 2251-8843

Figure 3. Steps of evolution by means of ES.

Initialization

First, μ solutions ⃗ 1
, ⃗ 2

, …, ⃗ μ
 are randomly generated.

Values of

 (i =1, 2, …, 162 (or 405); j = 1, 2, …, μ) are

sampled from the normal Gaussian distribution with mean=0
and S.D.=1.

Reproduction

New λ offspring solutions are produced by using the current
μ parent solutions. Fig.4 shows the steps of reproduction by
means of ES.

Figure 4. Steps of reproduction by means of ES.

In the step 2.2 in Fig.4, a new offspring solution ⃗ c is
generated from the parent solution ⃗p

as:

 ⃗c = ⃗p + ⃗, (1)

where,

 ⃗ is also a 162 (or 405) dimensional real vector, i.e., ⃗

= (d1, d2, …, d162 (or d405)), and

 di is a random real value where |di| is small or zero.

In our experiment, di is sampled from the normal Gaussian
distribution with mean=0 and S.D.=1.

Evaluation

In this step, fitness of each solution is evaluated. The fitness

in this research is the game score played by each autonomous
controller in which values of xi (i = 1, 2, ..., 162 (or 405)) is

utilized as the associated <array> values in the XML file. In
our experiment with the simulated car racing, we obtain the

fitness score by utilizing the simplerace.Stats class
which gives us the number of waypoints that the car
(controlled by the agent specified in the XML file) could visit
on 200 trials

7
. Besides, in our experiment with the MarioAI,

we obtain the fitness score by utilizing the ch.dsia.

scenarios.CompetitionScore class. This class gives
us the total score of the games with level 0, 3, 5 and 10
stages

11
.

Generation change

In this step, next-generation μ solutions are selected from
the population of the current μ solutions and the newly
generated λ solutions. Two different methods for this selection
are known as (μ+λ)-ES and (μ, λ)-ES [1]. As the next-
generation solutions, (μ+λ)-ES selects the best μ solutions
among the μ+λ solutions, while (μ, λ)-ES selects the best μ
solutions among the new λ solutions. We experimentally
applied both methods and found that, for the optimization
problem in this research, (μ+λ)-ES could evolve better
solutions than (μ, λ) ES could.

The steps 2 to 5 in Fig.3 are repeated MAX_GEN times
where MAX_GEN is a predefined number of generations.

B. Genetic Algorithm

The steps of evolution by means of GA in our research are
shown in Fig.5.

Figure 5. Steps of evolution by means of GA.

The steps 1, 2, and 5 are the same as those for ES.

Reproduction

Figs.6 and 7 show the steps of reproduction and crossover
by means of GA respectively. New (1 e) λ offspring
solutions are produced by using the current λ parent solutions.
Note that e λ solutions are copied from/to the current/next
generation by the elitism operation (so that the reproduction

11 marioai/src/ch/idsia/scenarios/CompetitionScore.java

5. #Generation <= MAX_GEN?

1. Initialization

2. Reproduction

3. Evaluation

4. Generation change

6. STOP

No
Yes

No
Yes

2.1 A solution is randomly selected
as a parent from the current μ solutions.

2.2 A new solution is generated
from the parent solution.

2.3 #New solutions < λ?

2.4. Finish reproduction

5. #Generation <= MAX_GEN?

1. Initialization

2. Evaluation

3. Reproduction

4. Generation change

6. STOP

No
Yes

International Journal of Science and Engineering Investigations, Volume 1, Issue 6, July 2012 14

www.IJSEI.com Paper ID: 10612-02 ISSN: 2251-8843

process produces only (1 e) λ new solutions).

Figure 6. Steps of reproduction by means of GA.

Figure 7. Steps of crossover by means of GA.

C. ES/GA Hybrids

As hybrids of ES and GA, we switch the application of the
two algorithms between the first/last half of the total
generations. For example, GA is applied in the first half of the
total generations, and then ES takes over from GA in the last
half of the total generations.

IV. EXPERIMENTAL COMPARISONS OF EVOLUTIONARY

ALGORITHMS

A. Applied to CIG2007 Simurated Car Racing

To fairly compare the algorithms ((μ+λ)-ES, GA, and their
switching hybrid), we should make consistent the total number
of solutions being generated and tested by each algorithm. In
our experiment, the total number of generations was set to
1,000, and the population size (the value of λ) was set to 10.
Thus, the total solutions being tested was 10,000 (= 10 1,000).
The value of μ for (μ+λ)-ES was experimentally set to 5, and

the parameter values for GA were experimentally set to:

 Blend crossover: α =0.5,

 Elitism: e =10%,

 Truncation: t =70%, and

 Mutation: m =1%.

These values performed the best than other values in our
experiment.

In the case of GAES switch, GA with the above setting
was applied in the first 500 generations, and the 10 offspring
solutions by GA in the 500th generation were taken over to ES
as the parent solutions in the 501th generation (the best 5
solutions among the 10 inherited solutions were actually used
as the parents because we utilized (5+10)-ES).

Fig.8 and Table I show the result, where the fitness scores
are the best ones among the 10 solutions in respective
generations. Fig.8 plots the fitness scores per 25 generations.
In Table I, values in the “max” row are the best scores among
the total 10,000 solutions by respective algorithms.

Fig.8 and Table I revealed the followings.

 In the first 25 generations, all of the three algorithms
could improve solutions rapidly. On the contrary, in
the following generations after the 26th, they could
improve solutions very slowly.

 It seemed that the solutions by ES resulted in
undesirable premature convergence: the solutions were
little improved in the latter generations.

These might due to the fact that the optimization problem in
this experiment was a large dimensional one (i.e., searching in
the 162 dimensional real-valued space) and that the population
size was relatively small (i.e., 10)

12
. By the mutation operator

GA could explore solutions globally even after the solutions
had gathered to some local minimum, but ES could only
exploit in a local minimum because ES could not generate
offspring solutions that were far enough from their parents in
the search space. Besides, the blend crossover operator might
contribute for GA to inhibit premature convergence, because
the operator could not only exploit between the two parents but
also explore outside of the two parents.

In addition, Fig.8 and Table I revealed that, in the last 500
generations, GAES switch improved solutions better than ES
and GA did. GAES switch could evolve the best solution
(which scored 3,894 in the racing simulation) among all of the
30,000 solutions. This shows that the ability of ES to searching
solutions locally (fine-tuning solutions) in the last generations
was better than that of GA. ES applied in our experiment
changed only one xi of the 162 values in a solution ⃗ (see
III.A) so that an offspring solution ⃗ c was very close to its
parent solution ⃗p. This might contribute to exploiting locally
better solutions; the 162 values of x1, x2, …, x162 are weights
and biases of a neural network so that conservative

12 Under the condition that the total number of solutions was 10,000,

evolutions by 10 solutions 1,000 generations were better than evolutions by

100 solution 100 generations in our experiment.

No
Yes

3.1 Elitism:
The best e% solutions in the current λ
solutions are copied to the next generation.

3.2 Selection:
The worst t% solutions in the current λ
solutions are truncated from the current λ
solutions (so that the number of the current
solutions decreases from λ to (1-t) λ).

3.3 Crossover:
A new solution is produced by the crossover
with two parent solutions and .

3.4 #New solutions < (1-e) λ?

3.5 Finish reproduction

3.4 Mutation:
Each of the 162 value in the offspring solutions
is mutated under the probability m%. The mutation
changes the current real value to a random one
as that in the initialization process.

3.3.1 From the current (1-t) solutions,
two parents and are randomly selected.

3.3.2 An offspring is produced by the blend
crossover (BLX-α)[6] with the two parents.

3.3.3 Finish crossover.

International Journal of Science and Engineering Investigations, Volume 1, Issue 6, July 2012 15

www.IJSEI.com Paper ID: 10612-02 ISSN: 2251-8843

modifications are appropriate in the final stage of fine-tuning
weights and biases.

Figure 8. Result of evolutions by the three algorithms.

TABLE I FITNESS SCORES BY THE THREE ALGORITHMS

Generation ES GA GAES

1 221 254 240

50 3,191 3,210 3,316

100 3,399 3,282 3,332

500 3,665 3,793 3,667

1,000 3,724 3,840 3,868

max 3,768 3,889 3,894

B. Applied toMarioAI 2009

Again, to fairly compare the algorithms we should make
consistent the total number of solutions being generated and
tested by an algorithm. In our experiment, the total number of
generations was set to 500, and the population size (the value
of λ) was set to 20. Thus, the total solutions being tested was
10,000 (= 20 500). The value of μ for (μ+λ)-ES was
experimentally set to 4, and the parameter values for GA were
experimentally set to:

 Blend crossover: α =0.5,

 Elitism: e =10%,

 Truncation: t =60%, and

 Mutation: m =1%.

These values performed the best than other values in our
experiment.

In the case of GAES switch, GA with the above setting
was applied in the first 250 generations, and the offspring 20
solutions by GA in the 250th generation were taken over to ES
as the parent solutions in the 251th generation (the best 4
solutions among the 20 inherited solutions were actually used
as the parents because we utilized (4+20)-ES). Similarly, in
the case of ESGA switch, ES with the above setting was
applied in the first 250 generations, and the offspring 20
solutions by GA in the 250th generation were taken over to
GA as the parent solutions in the 251th generation.

Fig.9 and Table II show the result for comparing ES, GA
and the two switches (ESGA and GAES), where the
fitness scores are the best ones so far at each generation (e.g.,
the fitness scores at the 250 generation in Fig.9 and Table II
show the best scores during the 1st-250th generations) by the
respective method.

Figure 9. Result of evolutions by the four algorithms.

TABLE II FITNESS SCORES BY THE FOUR ALGORITHMS

Generation ES GA ESGA GAES

1 1152 1426 1654 1155

25 7101 9948 10212 9284

50 9239 13001 13405 13642

100 12206 14729 14355 15618

200 13540 15793 14398 16218

250 14122 15793 14822 16358

300 14122 15793 15384 16358

400 14625 15793 15791 16358

500 14686 15793 16104 16358

Fig.9 and Table II revealed the followings.

 In the total 500 generations, GAES switch found a
better solution than the other three algorithms. Note
that the score by GAES was not improved in the last
half of generations. Thus, the best score 16,358 was a
result of GA, not of the GAES switch.

 At the 250th generation, the scores were better for GA
and GAES than for ES and ESGA. Thus, GA
outperformed ES in the first half of generations.

These might due to the high dimensionality of the search
space and the nature of ES/GA. In our application, the search
space is a 405 dimensional real valued one (R

405
) so that the

search efficiency by an algorithm will depend much on its
ability of exploration in the early stage of generations. The
blend crossover operator might contribute for GA to explore
broader area in the search space, because the operator could
not only exploit between the two parents but also explore
outside of the two parents. The mutation operation might also

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

ES GA ES→GA GA→ES

Generation
100 200 300 400 500

2

4

6

8

10

12

14

16

18

F
i
t
n
e
s
s
(
*
1
0

)
3

International Journal of Science and Engineering Investigations, Volume 1, Issue 6, July 2012 16

www.IJSEI.com Paper ID: 10612-02 ISSN: 2251-8843

contribute for GA to explore the space. On the contrary, the
search by ES is neighborhood oriented (due to its reproduction
process) so that ES was likely to contribute better for
exploitation than for exploration.

We expected that GAES would perform the best among
the four algorithms, because GAES would first explore
promising area by GA and then exploit the promising area by
ES, but the result was not consistent with the expectation.
Further investigations are required on balancing the
exploration and exploitation by mixtures of evolutionary
algorithms. Recently, hybrid uses of evolutionary algorithms
and local search algorithms have been researched, known as
memetic algorithms [7-9]. Our future work includes
application and evaluation of the memetic algorithms.

V. CONCLUSION

In this paper, we experimentally compared effectiveness of
ES, GA, and their switching hybrids (ESGA and GAES)
on the optimization problem of the neuro-based autonomous
game controllers. In the application to the CIG2007 simulated
car racing, premature convergence of solutions was observed
in the case of ES, and GA outperformed ES in the last half of
generations. The blend crossover operator and the mutation
operator of GA might contribute to inhibit undesirable
premature convergence. Besides, the GAES hybrid (in
which GA/ES was applied in the first/last half of generations)
evolved the best solution among the entire 30,000 solutions
being generated. This result shows the ability of GA in
globally searching promising areas in the early stage and the
ability of ES in locally searching the focused area (fine-tuning
solutions). On the contrary, in the application to MarioAI
2009, GA revealed its advantage in this optimization problem,
whereas the expected ability of ES in exploiting (fine-tuning)
solutions was not clearly observed. The blend crossover
operator and the mutation operator of GA might contribute
well to explore the vast search space.

Future work includes application and evaluation of memetic
algorithms and other AI/CI methods to this optimization
problem.

ACKNOWLEDGMENT

This research was supported by Kyoto Sangyo University
Research Grants.

REFERENCES

[1] H.-P. Schwefel, Evolution and Optimum Seeking. New York: Wiley &
Sons, 1995.

[2] D. E. Goldberg, Genetic Algorithms in Search Optimization and
Machine Learning. Addison Wesley, 1989.

[3] X. Yao, “A review of evolutionary artificial neural networks,”
International Journal of Intelligent Systems, vol.4, pp.539–567, 1993.

[4] K.O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol.10, no.2,
pp.99–127, 2002.

[5] S. Lucas, and J. Togelius, “Point-to-point car racing: an initial study of
evolution versus temporal difference learning,” Proc. of IEEE
Conference on Computational Intelligence and Games (CIG) 2007,
pp.260–267, 2007. http://cswww.essex.ac.uk/cig/2007/papers/2071.pdf

[6] L.J. Eshelman, “Real-coded genetic algorithms and interval-schemata,”
Foundations of Genetic Algorithms 2, pp.187–202, 1993.

[7] Y.S. Ong, M.H. Lim, N. Zhu and K.W. Wong, “Classification of
adaptive memetic algorithms: a comparative study,” IEEE Transactions
on Systems Man and Cybernetics - Part B, vol.36, no.1, pp.141–152,
2006.

[8] J.E. Smith, “Coevolving memetic algorithms: a review and progress
report,” IEEE Transactions on Systems Man and Cybernetics - Part B,
vol.37, no.1, pp.6–17, 2007.

[9] F. Neri, C. Cotta, and P. Moscato (eds), Handbook of Memetic
Algorithms. Springer, 2011.

Hidehiko Okada is currently a Professor with the Department of

Computer Science and Engineering, Kyoto Sangyo University, Kyoto,

Japan. He received the B.S. degree in industrial engineering and the

Ph.D. degree in engineering from Osaka Prefecture University in

1992 and 2003, respectively. He had been a researcher with NEC

Corporation from 1992 to 2003, and since 2004 he has been with the

university. His current research interests include computational

intelligence and human-computer interaction.

Jumpei Tokida and Yuki Fujii received the B.S. degrees in

computer science and engineering from Kyoto Sangyo University,

Kyoto, Japan, in 2012. Their research interests included evolutionary

algorithms and autonomous game controller agents.

