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Abstract- Researchers have been applying artificial/computa-
tional intelligence (AI/CI) methods to computer games. In this 
research field, further researches are required to compare AI/CI 
methods with respect to each game application. In this paper, 
we report our experimental results on the comparison of two 
evolutionary algorithms (evolution strategy and genetic 
algorithm) and their hybrids, applied to evolving autonomous 
game controller agents. The games are the CIG2007 simulated 
car racing and the MarioAI 2009. In the application to the 
simulated car racing, premature convergence of solutions was 
observed in the case of ES, and GA outperformed ES in the last 
half of generations. Besides, a hybrid which uses GA first and 
ES next evolved the best solution among the whole solutions 
being generated. This result shows the ability of GA in globally 
searching promising areas in the early stage and the ability of 
ES in locally searching the focused area (fine-tuning solutions). 
On the contrary, in the application to the MarioAI, GA 
revealed its advantage in our experiment, whereas the expected 
ability of ES in exploiting (fine-tuning) solutions was not 
clearly observed. The blend crossover operator and the 
mutation operator of GA might contribute well to explore the 
vast search space. 

Keywords- evolutionary algorithm; autonomous game controller 

agent; neuroevolution. 

 

I.  INTRODUCTION 

Researchers have been applying artificial/computational 
intelligence (AI/CI) methods to computer games, and reporting 
their research results in conferences including IEEE 
Conference on Computational Intelligence and Games (CIG)

1
  

and IEEE Congress on Evolutionary Computation (CEC)
2
. In 

these conferences, competitions on autonomous game AI 
agents have been held. For example, competitions on 
Simulated Car Racing

3
, Mario AI

4
, Ms. Pac-Man

5
, etc., were 

held in CIG 2011
6
. To develop high performance agents, AI/CI 

methods such as artificial neural networks, fuzzy sets, 
evolutionary algorithms, swarm intelligence and enforcement 

                                                           
1 http://www.ieee-cig.org/. 
2 http://cec2011.org/. 
3 http://cig.ws.dei.polimi.it/?page_id=175 
4 http://www.marioai.org/ 
5 http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html 
6 http://cilab.sejong.ac.kr/cig2011/?page_id=100 

learning have been applied. In this research field, further 
researches are required to compare AI/CI methods with respect 
to each game application; to investigate which methods can 
derive better agents than others for which application and why. 

In this paper, we report our experimental results on the 
comparison of two evolutionary algorithms (evolution strategy 
(ES) [1] and genetic algorithm (GA) [2] and their hybrids 
applied to evolving autonomous game controller agents. The 
games are the CIG2007 simulated car racing and the MarioAI 
2009. We select ES and GA because these are the 
representatives of the evolutionary algorithms.  

 

II. GAME APPLICATIONS 

We selected the CIG2007 simulated car racing and the 
MarioAI 2009 as the game applications because these games 
provided sample controller agents (written in Java) on the 
web

7,8
. The sample agents are neural network based ones; we 

expect sample agents will perform well as we tune values of 
their unit connection weights and unit biases. We apply 
evolutionary algorithms to the tuning of the weights and the 
biases. Training neural networks by means of evolutionary 
algorithms is known as neuroevolutions [3,4]. Unlike training 
with the back propagation algorithm, neuroevolutions do not 
require training data sets and gradient information of error 
functions.  

A. CIG 2007 Simulated Car Racing 

Fig.1 shows a screenshot of the CIG2007 simulated car 
racing. An autonomous agent controls its associated car to 
“visit as many way-points as possible in a fixed amount of 
time [5].” 

A starter kit has been provided on the web
9
. Samples of car 

controller agents are included in simplerace/classes/ 

simplerace. The agents are provided as Java classes. 
Source codes of the agents are also provided. We utilized the 

agent RMLPController (simplerace/classes/ 

simplerace/RMLPController.class) in our research, 
because the agent performed better than other sample agents in 

                                                           
7 http://julian.togelius.com/cig2007competition/ 
8 http://julian.togelius.com/mariocompetition2009/gettingstarted.php 
9 http://julian.togelius.com/cig2007competition/simplerace.zip 
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our experiment.  

 

 
Figure 1.  Screenshot of CIG2007 simulated car racing. 

 

 

The following command starts car racing simulation
7
:  

> java simplerace.Play evolved.xml 

The argument of the simplerace.Play class, evolved. 

xml, is an XML-formatted file. The XML file includes an 

<object> element with which the agent class used as the 
controller in the simulation is specified. For example, the 
following example of description:  

<object type="simplerace.RMLPController" 

id="0"> 

denotes that the class simplerace.RMLPController is 
used as the controller agent.  

This RMLPController agent is implemented with a 

recurrent multi-layer perceptron (RMLP); as the inputs, the 
RMLP receives data of car environment captured by car 
sensors, and the RMLP outputs data to actuate (control) its car. 
Values of RMLP weights and biases are specified with 

<array> elements in the XML file. Thus, better RMLP 

Controller will be evolved as the values of <array> 
elements are tuned. We experimentally compare the ability of 
evolutionary algorithms and their hybrids on this 

RMLPController neuroevolutions.  

B. MarioAI 2009 

Fig.2 shows a screenshot of Mario game played by a 
MarioAI agent. An autonomous agent controls Mario to “win 
as many levels (of increasing difficulty) as possible.”

8
  

A starter kit has been provided on the web
10

. Samples of 

Mario controller agents are included in marioai/ 

classes/ch/idsia/ai. The agents are provided as Java 
classes. Source codes of the agents are also provided. We 

experimentally utilized the agent SmallSRNAgent 

(marioai/classes/ch/idsia/ai/agents/ai/Sma

llSRNAgent.class) in this research.  

                                                           
10 http://julian.togelius.com/mariocompetition2009/marioai.zip 

 
Figure 2.  Screenshot of MarioAI 2009 game play. 

 

 

The following command starts game play simulation
8
:  

> java ch.idsia.scenarios.Play evolved.xml 

The argument of the ch.idsia.scenarios.Play class, 

evolved.xml, is an XML-formatted file. The XML file 

includes an <object> element with which the agent class 
used as the controller in the simulation is specified. For 
example, the following example of description:  

<object type="ch.idsia.ai.agents.ai.Small 

SRNAgent" id="0"> 

denotes that the class ch.idsia.ai.agents.ai.Small 

SRNAgent is used as the controller agent.  

This SmallSRNAgent is implemented with a recurrent 
multi-layer perceptron (RMLP); as the inputs, the RMLP 
receives data of environmental state captured by Mario 
sensors, and the RMLP outputs data to actuate (control) Mario. 
Values of RMLP weights and biases are specified with 

<array> elements in the XML file. Thus, better Small 

SRNAgents will be evolved as the values of <array> 
elements are tuned. We experimentally compare the ability of 
evolutionary algorithms and their hybrids on this 

SmallSRNAgent neuroevolutions.  

 

III. APPLYING EVOLUTIONARY ALGORITHMS TO GAME 

CONTROLLERS 

A solution of the optimization problem is a 162 dimensional 
real vector  ⃗  = (x1, x2, …, x162) in the application to the 
CIG2007 simulated car racing and a 405 dimensional real 
vector  ⃗ = (x1, x2, …, x405) in the application to the MarioAI 

2009. Each xi is a variable for an <array> element in the 
XML files.  

A. Evolution Strategy 

The steps of evolution by means of ES in our research are 
shown in Fig.3. 
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Figure 3.  Steps of evolution by means of ES. 

 

 

Initialization 

First, μ solutions  ⃗ 1
,  ⃗ 2

, …,  ⃗ μ
 are randomly generated. 

Values of   
 
 (i =1, 2, …, 162 (or 405); j = 1, 2, …, μ) are 

sampled from the normal Gaussian distribution with mean=0 
and S.D.=1.  
 

Reproduction 

New λ offspring solutions are produced by using the current 
μ parent solutions. Fig.4 shows the steps of reproduction by 
means of ES.  

 

 
Figure 4.  Steps of reproduction by means of ES. 

 

 

In the step 2.2 in Fig.4, a new offspring solution  ⃗ c is 
generated from the parent solution  ⃗p

 
as:  

 

 ⃗c =  ⃗p +  ⃗, (1) 

 

where,  

  ⃗ is also a 162 (or 405) dimensional real vector, i.e.,  ⃗ 

= (d1, d2, …, d162 (or d405) ), and  

 di is a random real value where |di| is small or zero.  

In our experiment, di is sampled from the normal Gaussian 
distribution with mean=0 and S.D.=1. 
 

Evaluation 

In this step, fitness of each solution is evaluated. The fitness 

in this research is the game score played by each autonomous 
controller in which values of xi (i = 1, 2, ..., 162 (or 405) ) is 

utilized as the associated <array> values in the XML file. In 
our experiment with the simulated car racing, we obtain the 

fitness score by utilizing the simplerace.Stats class 
which gives us the number of waypoints that the car 
(controlled by the agent specified in the XML file) could visit 
on 200 trials

7
. Besides, in our experiment with the MarioAI, 

we obtain the fitness score by utilizing the ch.dsia. 

scenarios.CompetitionScore class. This class gives 
us the total score of the games with level 0, 3, 5 and 10 
stages

11
. 

 

Generation change 

In this step, next-generation μ solutions are selected from 
the population of the current μ solutions and the newly 
generated λ solutions. Two different methods for this selection 
are known as (μ+λ)-ES and (μ, λ)-ES [1]. As the next-
generation solutions, (μ+λ)-ES selects the best μ solutions 
among the μ+λ solutions, while (μ, λ)-ES selects the best μ 
solutions among the new λ solutions. We experimentally 
applied both methods and found that, for the optimization 
problem in this research, (μ+λ)-ES could evolve better 
solutions than (μ, λ) ES could.  

The steps 2 to 5 in Fig.3 are repeated MAX_GEN times 
where MAX_GEN is a predefined number of generations.  

B. Genetic Algorithm 

The steps of evolution by means of GA in our research are 
shown in Fig.5. 

 

 
Figure 5.  Steps of evolution by means of GA. 

 

 

The steps 1, 2, and 5 are the same as those for ES.  
 

Reproduction 

Figs.6 and 7 show the steps of reproduction and crossover 
by means of GA respectively. New (1  e)  λ offspring 
solutions are produced by using the current λ parent solutions. 
Note that e λ solutions are copied from/to the current/next 
generation by the elitism operation (so that the reproduction 

                                                           
11 marioai/src/ch/idsia/scenarios/CompetitionScore.java 

5. #Generation <= MAX_GEN? 

1. Initialization 

2. Reproduction 

3. Evaluation 

4. Generation change 

6. STOP 

No
Yes

No
Yes

2.1 A solution is randomly selected 
as a parent from the current μ solutions.

2.2 A new solution is generated 
from the parent solution.

2.3 #New solutions < λ? 

2.4. Finish reproduction 

5. #Generation <= MAX_GEN? 

1. Initialization 

2. Evaluation 

3. Reproduction 

4. Generation change 

6. STOP 

No
Yes
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process produces only (1 e) λ new solutions).  

 

 
Figure 6.  Steps of reproduction by means of GA. 

 

 

 
Figure 7.  Steps of crossover by means of GA. 

 

C. ES/GA Hybrids 

As hybrids of ES and GA, we switch the application of the 
two algorithms between the first/last half of the total 
generations. For example, GA is applied in the first half of the 
total generations, and then ES takes over from GA in the last 
half of the total generations.  

 

IV. EXPERIMENTAL COMPARISONS OF EVOLUTIONARY 

ALGORITHMS 

A. Applied to CIG2007 Simurated Car Racing 

To fairly compare the algorithms ((μ+λ)-ES, GA, and their 
switching hybrid), we should make consistent the total number 
of solutions being generated and tested by each algorithm. In 
our experiment, the total number of generations was set to 
1,000, and the population size (the value of λ) was set to 10. 
Thus, the total solutions being tested was 10,000 (= 10 1,000). 
The value of μ for (μ+λ)-ES was experimentally set to 5, and 

the parameter values for GA were experimentally set to:  

 Blend crossover: α =0.5, 

 Elitism: e =10%, 

 Truncation: t =70%, and 

 Mutation: m =1%.  

These values performed the best than other values in our 
experiment.  

In the case of GAES switch, GA with the above setting 
was applied in the first 500 generations, and the 10 offspring 
solutions by GA in the 500th generation were taken over to ES 
as the parent solutions in the 501th generation (the best 5 
solutions among the 10 inherited solutions were actually used 
as the parents because we utilized (5+10)-ES).  

Fig.8 and Table I show the result, where the fitness scores 
are the best ones among the 10 solutions in respective 
generations. Fig.8 plots the fitness scores per 25 generations. 
In Table I, values in the “max” row are the best scores among 
the total 10,000 solutions by respective algorithms.  

Fig.8 and Table I revealed the followings.  

 In the first 25 generations, all of the three algorithms 
could improve solutions rapidly. On the contrary, in 
the following generations after the 26th, they could 
improve solutions very slowly.  

 It seemed that the solutions by ES resulted in 
undesirable premature convergence: the solutions were 
little improved in the latter generations.  

These might due to the fact that the optimization problem in 
this experiment was a large dimensional one (i.e., searching in 
the 162 dimensional real-valued space) and that the population 
size was relatively small (i.e., 10)

12
. By the mutation operator 

GA could explore solutions globally even after the solutions 
had gathered to some local minimum, but ES could only 
exploit in a local minimum because ES could not generate 
offspring solutions that were far enough from their parents in 
the search space. Besides, the blend crossover operator might 
contribute for GA to inhibit premature convergence, because 
the operator could not only exploit between the two parents but 
also explore outside of the two parents. 

In addition, Fig.8 and Table I revealed that, in the last 500 
generations, GAES switch improved solutions better than ES 
and GA did. GAES switch could evolve the best solution 
(which scored 3,894 in the racing simulation) among all of the 
30,000 solutions. This shows that the ability of ES to searching 
solutions locally (fine-tuning solutions) in the last generations 
was better than that of GA. ES applied in our experiment 
changed only one xi of the 162 values in a solution  ⃗  (see  
III.A) so that an offspring solution  ⃗ c was very close to its 
parent solution  ⃗p. This might contribute to exploiting locally 
better solutions; the 162 values of x1, x2, …, x162 are weights 
and biases of a neural network so that conservative 

                                                           
12  Under the condition that the total number of solutions was 10,000, 

evolutions by 10 solutions   1,000 generations were better than evolutions by 

100 solution   100 generations in our experiment.  

No
Yes

3.1 Elitism: 
The best e% solutions in the current λ 
solutions are copied to the next generation.

3.2 Selection: 
The worst t% solutions in the current λ 
solutions are truncated from the current λ 
solutions (so that the number of the current 
solutions decreases from λ to (1-t) λ).

3.3 Crossover: 
A new solution is produced by the crossover 
with two parent solutions and .

3.4 #New solutions < (1-e) λ?

3.5 Finish reproduction 

3.4 Mutation: 
Each of the 162 value in the offspring solutions 
is mutated under the probability m%. The mutation 
changes the current real value to a random one 
as that in the initialization process. 

3.3.1 From the current (1-t) solutions, 
two parents and are randomly selected.

3.3.2 An offspring is produced by the blend 
crossover (BLX-α)[6] with the two parents. 

3.3.3 Finish crossover. 
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modifications are appropriate in the final stage of fine-tuning 
weights and biases. 

 

 
Figure 8.  Result of evolutions by the three algorithms. 

 

 

TABLE I   FITNESS SCORES BY THE THREE ALGORITHMS 

Generation ES GA GAES 

1 221 254 240 

50 3,191 3,210 3,316 

100 3,399 3,282 3,332 

500 3,665 3,793 3,667 

1,000 3,724 3,840 3,868 

max 3,768 3,889 3,894 

 

B. Applied toMarioAI 2009  

Again, to fairly compare the algorithms we should make 
consistent the total number of solutions being generated and 
tested by an algorithm. In our experiment, the total number of 
generations was set to 500, and the population size (the value 
of λ) was set to 20. Thus, the total solutions being tested was 
10,000 (= 20  500). The value of μ for (μ+λ)-ES was 
experimentally set to 4, and the parameter values for GA were 
experimentally set to:  

 Blend crossover: α =0.5, 

 Elitism: e =10%, 

 Truncation: t =60%, and 

 Mutation: m =1%.  

These values performed the best than other values in our 
experiment.  

In the case of GAES switch, GA with the above setting 
was applied in the first 250 generations, and the offspring 20 
solutions by GA in the 250th generation were taken over to ES 
as the parent solutions in the 251th generation (the best 4 
solutions among the 20 inherited solutions were actually used 
as the parents because we utilized (4+20)-ES). Similarly, in 
the case of ESGA switch, ES with the above setting was 
applied in the first 250 generations, and the offspring 20 
solutions by GA in the 250th generation were taken over to 
GA as the parent solutions in the 251th generation.  

Fig.9 and Table II show the result for comparing ES, GA 
and the two switches (ESGA and GAES), where the 
fitness scores are the best ones so far at each generation (e.g., 
the fitness scores at the 250 generation in Fig.9 and Table II 
show the best scores during the 1st-250th generations) by the 
respective method.  

 

 
Figure 9.  Result of evolutions by the four algorithms. 

 

 

TABLE II   FITNESS SCORES BY THE FOUR ALGORITHMS 

Generation ES GA ESGA GAES 

1 1152  1426  1654  1155  

25 7101  9948  10212  9284  

50 9239  13001  13405  13642  

100 12206  14729  14355  15618  

200 13540  15793  14398  16218  

250 14122  15793  14822  16358  

300 14122  15793  15384  16358  

400 14625  15793  15791  16358  

500 14686  15793  16104  16358  

 

Fig.9 and Table II revealed the followings.  

 In the total 500 generations, GAES switch found a 
better solution than the other three algorithms. Note 
that the score by GAES was not improved in the last 
half of generations. Thus, the best score 16,358 was a 
result of GA, not of the GAES switch.  

 At the 250th generation, the scores were better for GA 
and GAES than for ES and ESGA. Thus, GA 
outperformed ES in the first half of generations.  

These might due to the high dimensionality of the search 
space and the nature of ES/GA. In our application, the search 
space is a 405 dimensional real valued one (R

405
) so that the 

search efficiency by an algorithm will depend much on its 
ability of exploration in the early stage of generations. The 
blend crossover operator might contribute for GA to explore 
broader area in the search space, because the operator could 
not only exploit between the two parents but also explore 
outside of the two parents. The mutation operation might also 
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contribute for GA to explore the space. On the contrary, the 
search by ES is neighborhood oriented (due to its reproduction 
process) so that ES was likely to contribute better for 
exploitation than for exploration.  

We expected that GAES would perform the best among 
the four algorithms, because GAES would first explore 
promising area by GA and then exploit the promising area by 
ES, but the result was not consistent with the expectation. 
Further investigations are required on balancing the 
exploration and exploitation by mixtures of evolutionary 
algorithms. Recently, hybrid uses of evolutionary algorithms 
and local search algorithms have been researched, known as 
memetic algorithms [7-9]. Our future work includes 
application and evaluation of the memetic algorithms.  

 

V. CONCLUSION 

In this paper, we experimentally compared effectiveness of 
ES, GA, and their switching hybrids (ESGA and GAES) 
on the optimization problem of the neuro-based autonomous 
game controllers. In the application to the CIG2007 simulated 
car racing, premature convergence of solutions was observed 
in the case of ES, and GA outperformed ES in the last half of 
generations. The blend crossover operator and the mutation 
operator of GA might contribute to inhibit undesirable 
premature convergence. Besides, the GAES hybrid (in 
which GA/ES was applied in the first/last half of generations) 
evolved the best solution among the entire 30,000 solutions 
being generated. This result shows the ability of GA in 
globally searching promising areas in the early stage and the 
ability of ES in locally searching the focused area (fine-tuning 
solutions). On the contrary, in the application to MarioAI 
2009, GA revealed its advantage in this optimization problem, 
whereas the expected ability of ES in exploiting (fine-tuning) 
solutions was not clearly observed. The blend crossover 
operator and the mutation operator of GA might contribute 
well to explore the vast search space.  

Future work includes application and evaluation of memetic 
algorithms and other AI/CI methods to this optimization 
problem.  
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