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Abstract-Engineering problems and the solutions of many 

important physical problems are centered on finding accurate 

solutions to Nonlinear functions. Various approximation 

methods have been used for complex equations. One of the 

newest approximation methods is Reconstruction of variational 

iteration method (RVIM). In this Paper we use RVIM to 

solution N-soliton solutions for the fifth order Caudrey-Dodd-

Gibbon (CDG) Equation. Results compared with those of 

Adomian’s decomposition method (ADM).The comparisons 

show that the Reconstruction of  RVIM  is very effective and 

overcome the tedious work that traditional methods require and 

quite accurate to systems of non-linear partial differential 

equations. 
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I.  INTRODUCTION  

In recent years the theory of solitary waves has attracted much 

concern for treatment of PDEs describing nonlinear and 

development concepts. Partial differential equations which 

emanate in real-world physical problems are often too 

complicated to be solved exactly, and even if an exact solution 

is obtainable, such as inverse scattering method, Ba¨cklund 

transformation method, Hirota’s bilinear scheme [1-2], 

Hereman’s method [3], pseudo spectral method, Jacobi elliptic 

method, Painleve´ analysis [4], and other methods, the required 

calculations may be practically too complicated, or it  might be 

difficult to expound the outcome. With the rapid promotion of 

linear and nonlinear science, in the past several decades, 

various methods for obtaining solutions of DEs have been 

presented, such as Homotopy perturbation method, variational 

iteration method, exp-function method and RVIM and so on. 

RVIM has been shown to solve a large class of nonlinear 

problems with approximations converging to solutions rapidly, 

effectively, easily, and accurately. besides the aim of this paper 

is to show that RVIM is strongly and simply capable of solving 

a large class of linear or nonlinear differential equations 

without the tangible restriction of sensitivity to the degree of 

the nonlinear term. The most sensible advantages of RVIM are 

using Laplace Transform and choosing initial conditions 

simply and easily in solving linear and nonlinear equations. 

In this article we use RVIM to solve the N-soliton solutions for 

the fifth order Caudrey-Dodd-Gibbon (CDG) Equation. 
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with ),( txu  is a adequately often differentiable function. The 

CDG equation dominate the Painleve´ property as 

demonstrated by Weiss in [4]. A useful study is introduced in 

[4] using the Painleve´ property and the Ba¨cklund 

transformation in handling the CDG equation and other 

equations as well. It was found in [4] that the CDG Equation 

(1) has the Backlund transformation 
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 The last two equations can be expressed as the Lax pair 
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 The objective of this work is to promote other studies related 

to the CDG equation. The tanh method [5, 6], and the tanh-coth 
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method [7] will be used to emphasize its power in the 

determination of single-soliton solution and other travelling 

wave solutions. We plan to use RVIM to solve this equation. 
 

II. BASIC IDEA OF RVIM 

To clarify the basic ideas of our proposed method in [8], we 

consider the following differential equation same as VIM based 

on Lagrange multiplier [9]: 
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where L is a linear operator, N a nonlinear operator and 

),...,( 1 kxxf  an inhomogeneous term.  

we can rewrite equation (3) down a correction functional as 

follows: 
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therefore 

)),,(),,,(()( 11 kkjxj xxuxxhxuL 
            (6) 

With artificial initial conditions being zero regarding the 

independent variable xj. 

 

By taking Laplace transform of both sides of the equation (6) 

in the usual way and using the artificial initial conditions, we 

obtain the result as follows 
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Where P(s) is a polynomial with the degree of the highest 

derivative in equation (7), (the same as the highest order of the 

linear operator 
jxL ). The following relations are possible;  

H[h] 
            (8-a) 

P(s)

1
B(s)                             (8-b) 

B(s))][b(x i 
          (8-c) 

 

Which that in equation (8-a) the function 
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and )),,,,,,(( 111 uxxxxxh kiii   

have been abbreviated as H, h respectively. 

 Hence, rewrite the equation (7) as; 
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Now, by applying the inverse Laplace Transform on both sides 

of equation (9) and by using the (8-a) - (8-c), we have; 
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Now, we must impose the actual initial conditions to obtain the 

solution of the equation (3). Thus, we have the following 

iteration formulation: 
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Where 0u is initial solution with or without unknown 

parameters. Assuming 0u  is the solution of Lu, with 

initial/boundary conditions of the main problem, In case of no 

unknown parameters,  0u  should satisfy initial/ boundary 

conditions. When some unknown parameters are involved in 

0u , the unknown parameters can be identified by 

initial/boundary conditions after few iterations, this technology 

is very effective in dealing with boundary problems. It is worth 

mentioning that, in fact, the Lagrange multiplier in the He's 

variational iteration method is )()(   ixb  as shown in 

[10]. 

The initial values are usually used for selecting the zeroth 

approximation 0u . With 0u determined, then several 

approximations 0nun , follow immediately. Consequently, 

the exact solution may be obtained by using 
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                                                               (12) 

 

III. APPLYING RVIM 

Before To demonstrate the effectiveness of the method 

we consider here Eq.(1) with given initial condition. 

Consider the Caudrey-Dodd-Gibbon (CDG) Equation 

(1) with the following initial condition: 
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At first rewrite eq. (1) based on selective linear operator 

as    
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Now Laplace transform is implemented with respect to 

independent variable x on both sides of eq. (14) and by 
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using the new artificial initial condition (which all of 

them are zero) we have  
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And whereas Laplace inverse transform of 1/s is as 

follows  
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Therefore by using the Laplace inverse transform and 

convolution theorem it is concluded that 
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Hence, we arrive the following iterative formula for the 

approximate solution of subject to the initial condition 

(13). 

So, in exchange with applying recursive algorithm, 

following relations are achieved 
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 Now we start with an arbitrary initial approximation 

)(sec),( 22

0 xhtxu   that satisfies the initial 

condition and by using the RVIM iteration formula (19), 

we have the following successive approximation 
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Figure.1. The surfaces on both columns respectively show the 

solutions, u(x,t), for RVIM on the top and ADM on the bottom 

when µ=1. 
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Figure.1. The surfaces on both columns respectively show the 

solutions, u(x,t), for RVIM on the top and ADM on the bottom 

when µ=2. 
 

IV. CONCLUSION 

In this paper, we successfully apply Reconstruction of 
Variational Iteration Method (RVIM) to approximate the 
solution of fifth order Caudrey-Dodd-Gibbon (CDG) Equation. 
Also, comparisons were made between He’s variational 
iteration method and Adomian decomposition method (ADM) 
for Caudrey-Dodd-Gibbon (CDG) Equation. Moreover, the 
RVIM reduces the size of calculations by not requiring the 
tedious Adomian polynomials, and hence the iteration is direct 
and straightforward. The results reported here provide further 
evidence of the usefulness of RVIM for finding the analytic 
and numeric solutions for the linear and nonlinear diffusion 
equations and, it is also a promising method to solve different 
types of nonlinear equations in mathematical physics. 
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