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Abstract- In this research, a powerful analytical method called 
Reconstruction of Variational Method (RVIM) is introduced 
to handle two boundary value problems. One is a 
parameterized sixth order boundary value problem and the 
other is a nonlinear boundary value problem arising in the 
study of thin film flow of a third grade fluid down an inclined 
plane. With similarity method, the governing equations can be 
reduced to a system of nonlinear ordinary differential 
equations. The effectiveness of the method, which is 
independent of the small parameter, is investigated by 
comparing the results obtained with the numerical ones (4th 
order Rung-kutta method) and the exact ones. For the second 
problem the velocity profile is plotted and the effect of 
varying the material constant on the velocity profile is studied. 

Keywords- Rotating disk; Condensation film; Analytical 

approach; Reconstruction of Variational Method, RVIM 

 

I.  INTRODUCTION 

Nonlinear problems and phenomena play an important role 
in applied mathematics, physics, engineering and other 
branches of science. Except for a limited number of these 
problems, most of them do not have precise analytical 
solutions; therefore, these nonlinear equations should be solved 
using approximation methods. 

The perturbation method is one well-known method to 
solve nonlinear equations. But since, using the common 
perturbation method is based on the existence of a small 
parameter, developing the method for different application is 
difficult. Therefore, many different new techniques have been 
recently introduced to eliminate the small parameter, such as 
the Adomian decomposition method [1-3], the Homotopy 
analysis method [4-6], the Homotopy perturbation method [7-
10]. 

In this letter we employ a new and effective analytical 
method named Reconstruction of Variational Iteration method 
(RVIM) to solve two strongly boundary value problems. By 

applying Laplace Transform, RVIM overcomes the difficulty 
of the perturbation techniques and other variational methods in 
case of using small parameters and Lagrange multipliers, 
respectively. Reducing the size of calculations and omitting the 
difficulty arising in calculation of nonlinear intricately terms 
are other advantages of this method. Besides, it provides us 
with a simple way to ensure the convergence of solution series, 
so that we can always get accurate enough approximations 
even in first orders of the result iteration. 

 

II. RVIM METHOD AND CONVOLUTION THEOREM  

In this section, an alternative method for finding the 

optimal value of the Lagrange multiplier by the use of the 

Laplace transform will be introduced [11 -12]. Suppose x is 

the independent variable; applying Laplace transform to 

( , )u x t with respect to x as variable, we have 

 
0

( , ); ( , )stu x t s e u x t dt


 
          

(1) 

 ( ) ( );U s u x s             (2) 

We often come across functions which are not the transform 

of known functions. But, by means of the convolution 

theorem, we can take the inverse Laplace transform. The 

convolution of ( )u x and ( )v x is written as ( )* ( )u x v x . It is 

defined as the integral of the functions after one is reversed 

and shifted. If ( )U s and
 

( )V s  are the Laplace transforms of 

( )u x and ( )v x , respectively. Then ( )* ( )U s V s is the 

Laplace Transform of
0

( ) ( )
x

u x v d    so by taking 

inverse Laplace Transform as below, 

 1

0
( ) ( ) ( ) ( )

x

U s V s u x v d                
(3) 

To illustrate the concept of the RVIM, we consider the 

following general differential equation 

( ( )) ( ( )) ( )L u x N u x f x             (4) 
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Where L  and N  are linear and nonlinear operators 

respectively and ( )f x is the forcing term. To facilitate our 

discussion of RVIM, with introducing the new 

function ( ( )) ( ) ( ( ))h u x f x N u x  and considering the 

new equation, Eq. (4) can be rewritten as, 

( ( )) ( , )L u x h u x             (5) 

Now, for implementation the RVIM technique based on new 

idea of Laplace transform, we apply Laplace Transform on 

both sides of the Eq. (5). Introducing all artificial initial 

conditions as zero for the main problem, the left side of the 

equation after transformation will be 

 ( ( )) ( ) ( )L u x U s P s            (6) 

Where ( )P s is polynomial with the highest order derivative of 

the selected linear operator 

   ( ( )) ( ) ( ) ( , )L u x U s P s h u x           (7) 

 ( , )
( )

( )

h u x
U s

P s
             (8) 

Suppose that
1

( )
( )

D s
P s

 and  ( , ) ( )h u x H s . Using 

the convolution theorem we have;  

 ( ) ( ) ( ) ( )* ( , )U s D s H s d x h u x            (9) 

Taking the inverse Laplace transform on both sides of Eq. (9) 

0
( ) ( ) ( , )

x

u x d x h u d             (10) 

Thus the following reconstructed method of variational 

iteration formula can be obtained  

1 0
0

( ) ( ) ( ) ( , )
x

n nu x u x d x h u d              (11) 

III. A PARAMETERIZED SIXTH ORDER BOUNDARY VALUE 

A. Governing Equation 

Consider the following problem 
(6) (4)( ) (1 ) ( ) ( ) , 0 1,u x c u x cu x cx x     

        
(12) 

With boundary conditions: 

(0) 1, (0) 1, (0) 0,

7 1
(1) sinh(1), (1) cosh(1), (1) 1 sinh(1).

6 2

u u u

u u u

   

      

             

(13) 

The exact solution of this problem is: 

31
( ) 1 sinh( ).

6
u x x x              (14) 

We see the exact solution of this problem does not depend on 

the parameter c but the problem itself does. This can be 

viewed by rewriting Eq.(12) as 
(6) (4) (4){ ( ) ( )} { ( ) ( ) } 0,u x u x c u x u x x    

        
(15) 

Which shows that, no matter what the value of c is, a solution 

of fourth order problem is also a solution of the sixth-order 

problem. 

B. Implementation of RVIM 

Considering the initial approximations for u as follow 
5 4 3

0( ) 1,u x ax bx dx x    
          

(16) 

Rewriting equations (12), based on selective linear operator 

we have 
(6) (4)( ) (1 ) ( ) ( ) ,u x c u x cu x cx   

         
(17) 

Now Laplace transform is implemented with respect to 

independent variable x on both sides of Eqs. (17). Using the 

new artificial boundary conditions (which all of them are zero) 

we have 

 6 (4)( ) (1 ) ( ) ( ) ,s U s L c u x cu x cx   
         

(18) 

By using the Laplace inverse Transform and convolution 

theorem, it is concluded that 

 (4)
5

0

( )
( ) (1 ) ( ) ( )

120

x x
u x c u cu c d


   


   

   

(19) 

Hence, we arrive at the following iterative formula for the 

approximate solution of (12), subject to the boundary 

conditions (13), 

1( )nu x 
 

 (4
5

0

)

0

( )
( ) (1 ) ( ) ( )

120
n

x

n

x
u x c u cu c d


   


   

                           

(20) 

According to above equations, for first order approximation 

we have: 

1( )u x 
 

 (4
5

0

)

0 0
0

( )
( ) (1 ) ( ) ( )

120

x x
u x c u cu c d


   


   

                           

(21) 

With substituting boundary conditions (13) in the iterative 

formula (20) the unknown constants of the initial 

approximation (16) will be determined and with pitting them 

in the result formula the final answer is approached. More the 

order of the iteration growth more the accuracy of the solution 

increases. We calculated the first order of approximation 

for 1000c  : 

11

10 9

8 7

6 5

1

4 3

( ) 1 0.00001516539800

0.0002562231482 0.00407918271

0.02306008083 0.09516837381

0.09623299760 0.005044617900

0.03874093580 0.3476013510

u x x

x x

x x

x x x

x x

 

 

 

  

 

       

(22) 

In Table 1, results obtained from the first order of RVIM 

are compared with the exact results (4
th
 order Rung-Kutta 

method) and the Error value is compared with the Error of two 

other approximate methods called HAM and OHAM. It is 

revealed that a good accuracy to the exact results is achieved 

and RVIM is more accurate and rapid than two other methods, 

in converging to the exact results. 
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TABLE1. COMPARISON BETWEEN RVIM RESULTS AND NUMERICAL RESULTS 

AND HAM AND OHAM RESULTS FOR C=1000 

x 

Results  Errors (|Num. – Obtained Results|) 

Numerical 
1th order 

RVIM 
 HAM4 

[13] OHAM3[14] RVIM1 

0 1.100333417 1.100343863 
 

9.1E-06 1.1E-05 1.04E-05 

0.1 1.202669336 1.202725442  1.6E-04 3.3E-06 5.61E-05 

0.2 1.309020293 1.309134624  4.4E-04 1.4E-05 1.1E-04 

0.3 1.421418993 1.421560777  6.8E-04 5.2E-06 1.4E-04 

0.4 1.541928638 1.542044445  7.3E-04 4.2E-05 1.1E-04 

0.5 1.672653582 1.672706014  5.8E-04 5.7E-05 5.24E-05 

0.6 1.815750369 1.815744644  3.2E-04 4.9E-05 5.7E-06 

0.7 1.973439315 1.973415403  9.8E-05 4.5E-05 2.39E-05 

0.8 2.148016726 2.148008063  4.7E-06 2.4E-05 8.66E-06 

0.9 1.100333417 1.100343863  9.1E-06 1.1E-05 1.04E-05 

 

IV. THIN FILM FLOW PROBLEM 

A. Governing Equations 

The thin film flow of a third grade fluid down an inclined 

plane of inclination 0   is governed by the following 

nonlinear boundary value problem [15] 

 
22 2

2 3

2 2

6 sin
0

d u du d u g

dy dy dy

   

 

  
   

          

(23) 

(0) 0, 0
du

u
dy

  at .y            (24) 

Introducing the parameters 

 

2
* *

2 2
*

2 33

sin
, ,

3 sin

g
y y u u

g

  




  
  



 

 

          (25) 

The problem in Equations (23) and (24), after omitting 

asterisks, takes the following form 
22 2

2 2
6 1 0,

d u du d u

dy dy dy

 

   
            

(26) 

(0) 0, 0
du

u
dy

  at 1,y 
          

(27) 

where   is the dynamic viscosity, g is the gravity,   is the 

fluid density and 0   is the material constant of a third 

grade fluid. We note that Equation (26) is a second order 

nonlinear and inhomogeneous differential equation with two 

boundary conditions; therefore, it is a well-posed problem.  

Through integration of Equation (26) we have 
3

12 ,
du du

y C
dy dy


 

   
            

(28) 

where 1C  is a constant of integration. Employing the second 

condition of (27) in Equation (28), we obtain 1 1C  . Thus, 

the system (26)-(27) can be written as 

 
3

2 1 0,
du du

y
dy dy


 

    
            

(29) 

(0) 0u              
(30) 

B. Implementation of RVIM 

In this section, we employ RVIM to solve Equation (29). 

The initial guess is in the following form:    

0( ) ,u y ay
            

(31) 

Rewriting equations (29), based on selective linear operator 

we have 

 
3

2 1 ,
du du

y
dy dy


 

    
 

          (32) 

Now Laplace transform is implemented with respect to 

independent variable yon both sides of Eqs. (32). Using the 

new artificial boundary conditions (which all of them are zero) 

we have 

   
3

2 1 ,
du

sU s L y
dy


   

     
             

(33) 

By using the Laplace inverse Transform and convolution 

theorem, it is concluded that 

 
3

0
( ) 2 1

y du
u y d

d
  



  
        


         

(34) 

Hence, we arrive at the following iterative formula for the 

approximate solution of (29), subject to the boundary 

condition (30), 

 0

3

1
0

( ) ( ) 2 1n
n

y du
u y u y d

d
  




  
         


     

(35) 

According to above equations, for first order approximation 

we have: 

 0
1 0

0

3

( ) ( ) 2 1
y du

u y u y d
d

  


  
         


        

(36) 

With substituting boundary condition (30) in the iterative 

formula (35) the unknown constant of the initial 

approximation, a, will be determined and with pitting it in the 

result formula the final answer is approached. We calculated 

the second and third order of approximations when 0.1  : 

2

1( ) 0.5u y y x 
                 

(37) 

4

2

3 2

( ) 0.9216606811 0.02499999999

0.09216606814 0.3725812384

u y y y

y y

 

 
        

(38) 

10

3

9 8

7 6

5 4

3 2

( ) 0.9216989942 0.0000099999999984

0.000009216989946 0.000007288066267

0.00185904286 0.002620995626

0.01322497812 0.02451410684

0.02768570224 0.40504871258

u y y y

y y

y y

y y

y y

 

 

 

 

 

 

                   

(39) 

The third and fourth orders are calculated but not 

mentioned for brevity. All the results presented in figures and 
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table in the next section are obtained from the fourth order of 

RVIM solution. 

C. Results and Discussion 

The effectiveness of Reconstruction of Variational Method 

(RVIM) is depicted in Table 2 and Figs 1 and 2. The results 

are well matched with the results carried out by numerical 

solution (Runge–Kutta). In Table 2, error is introduced as 

follow:  

NM RVIMError u( y ) u( y ) 
          

(40)
 

Errors of first four orders of the approximation are presented 

in Table 2. It is obvious that the solution rapidly converges to 

the exact results and just in the 4th order of the iteration we got 

efficient accuracy. 

 

Figs. 1 and 2 describes the comparison between the RVIM and 

numerical results for β =0.05 and β =0.1. An excellent 

agreement is observed. This accuracy gives high confidence in 

the validity of this problem, and reveals an excellent 

agreement in engineering accuracy.
  

 

 
Fig. 1.Comparison between RIVM and Numerical results for 0.05   

  
Fig. 2.Comparison between RIVM and Numerical results for 0.1   

 
 

 

 Fig. 

3.Contour of u(y) for different values of material constant from 0 to

 

TABLE2. COMPARISON BETWEEN NUMERICAL RESULTS AND FIRST 4 ORDERS OF RVIM SOLUTION 

x 

Result  Error 

Numerical 4th order RVIM  1th order 2nd order 3rd order 4th Order 

0 0 0  0 0 0 0 

0.1 0.088138419 0.088149704 0.006861581 0.000212171 4.89931E-05 1.12857E-05 

0.2 0.168025973 0.168055406 0.011974027 0.000705585 0.000144392 2.94331E-05 

0.3 0.239379703 0.239423264 0.015620297 0.001300206 0.000236682 4.35612E-05 

0.4 0.301920879 0.301972623 0.018079121 0.001871766 0.000305136 5.17436E-05 

0.5 0.355381573 0.355437002 0.019618427 0.002345199 0.000346851 5.54283E-05 

0.6 0.399512222 0.399568956 0.020487778 0.00268707 0.000367566 5.67343E-05 

0.7 0.434090632 0.434147761 0.020909368 0.002896576 0.000375465 5.71286E-05 

0.8 0.45893138 0.458988537 0.02106862 0.002996145 0.000377559 5.71573E-05 

0.9 0.473894277 0.473951351 0.021105723 0.003022969 0.000377905 5.7074E-05 

1 0.478891578 0.478948856 0.021108422 0.003021797 0.000377705 5.72784E-05 



International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 10 

www.IJSEI.com           Paper ID: 21213-02 ISSN: 2251-8843 

In figure 3 the effects of varying β have been investigated. 

As it is shown by contour in this figure the concentration of 

u(y) occurs in x=1 for small amount of material constant. It 

is illustrated that with increasing β the amount of u(y) 

decreases generally. In low values of x these changes are not 

sensible, while in greater x values, the changes of u(y) are 

more noticeable. 
 

V. CONCLUSION 

In this paper, a strong analytical method called 

Reconstruction of Variational Iteration Method (RVIM) has 

been successfully applied to find explicit solutions of two 

boundary value problems, which may occur in different 

fields of science and engineering. Both of illustrating 

examples confirm the convenience, reliability and efficiency 

of this method. RVIM can be introduced to overcome the 

limitations and difficulties existing in other approximate 

method, e.g. large computation need, use of small 

parameters, convergence in high orders of approximations. 

It is predicted that RVIM can be used widely in 

mathematical, physical and engineering problems, due to its 

simplicity and efficiency.  
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