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Abstract-Kinematics of a double-cone self-propelled on a straight 
V-shape horizontal rail is investigated. This mechanism can be 
regarded as a gravitational motor that transforms the potential 
energy into kinetic energy, of rotation and translation. Movies 
of carbon steel double-cones rolling on aluminum rails were 
shot for various opening angles of the rails. Variable period of 
rotation, the number of rotations, and the total traveling time of 
the double-cone are obtained through slow motion processing 
of the taken movies. Proposed theoretical model, which is quite 
well validated by the experimental results, proves that the point 
of contact moves on the conical surface along a logarithmic 
spiral. Results obtained in this work are useful for the proper 
design of such gravitational motor. 

Keywords-Double-cone, Point of contact, Logharitmic spiral, 

Gravitational motor, Kinematics 

 

I. INTRODUCTION 

First mention in the recorded history of a double-cone, able 
to self-propel due to the action of gravity along straight rails, 
upwardly directed and disposed as a V letter, i.e., the so-called 
“ascending cone” [1, 2], is related to Leonardo da Vinci from 
the European Renaissance period in the 15 century. Later, in 
1829, the idea of a self-moving train using such gravitational 
motor that transforms the potential energy into kinetic energy 
of rotation and translation, was patented, but not turned into 
practice. Although, the apparent paradox of the ascending cone 
is a subject treated by the introductory Physics in connection to 
the center of mass (gravity), still there are several mechanical 
aspects, insufficiently explained. In order to clarify the basic 
educational aspects of the problem, accessible Physics tests to 
be performed in class, and simplified theoretical models were 
proposed [1]. On the other hand, sophisticated models, both 
from the physical and mathematical standpoints, of the rolling 
friction in general [3], and of the ascending cone problem in 
particular [2], can be found in the literature. 

Although the gravitational motors employing double-cones 
have relative large applicative potential, the concrete range of 
practical applications remains unsettled. One of the reasons is 
that, in order to properly design such mechanism, a relatively 
simple theoretical model, but sufficiently well validated by the 
experimental results is needed. To achieve such target, in this 
work, firstly movies of carbon steel double-cones, rolling on 
straight V-shape horizontally displaced aluminum rails, were 
shot for various opening angles of the rails. Then, through slow 

motion processing of the taken movies, the variable period of 
rotation, the number of rotations, and the total traveling time of 
the double-cone are obtained. Next, a theoretical model, which 
is relatively well validated by the experimental results, is 
proposed. Based on such geometrical and kinematical analysis, 
one proves that the points of contact between the double-cone 
and rails move on the conical surface along a logarithmic spiral. 

 

II. TEST RIG AND EXPERIMENTAL PROCEDURE 

Two cones made of S45C carbon steel, each having a 
height H and a radius R at the base circle, are joined together 
by using a bonding adhesive, to achieve a double-cone (Fig. 1). 
In order to experimentally observe the influence of the apex 

angle )/(tan 1 HR  of the cone, two types of double-cones 

having different dimensions, were manufactured. Thus, Table I 
shows the physical (diameter 2R at the base circle, total height 
2H, apex angle, mass m, and moment of inertia  I = 0.3mR

2
), 

material (modulus of elasticity cE , and Poisson’s ratio c ) and 

tribological (static friction coefficient s  and dynamic friction 

coefficient   against the aluminum rails) properties of the 

tested double-cones. Aluminum rails having the modulus of 

elasticity of rE 74GPa, the Poisson’s ratio of r 0.33, the 

length of L0 = 1,000 m, the height of H0 = 50 mm, and the 
chamfering radius of R0 = 1 mm, are disposed on a horizontal 
table forming a V letter of entrance L2 and exit L1 (Figs. 2-8). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Photographs and physical properties of the tested double-cones. 
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TABLE I.  PHYSICAL, MATERIAL  AND TRIBOLOGICAL PROPERTIES OF 

THE TESTED DOUBLE-CONES [4-6] 

Property Double-cone 1 Double-cone 2 

Diameter, 2R [mm] 50 55 

Total height (length), 2H [mm] 200 96 

Mass, m [kg] 1.05 0.63 

Moment of inertia, I [kg·mm2] 197 143 

Apex angle, Ψ [deg] 14.036 29.809 

Material S45C steel S45C steel 

Modulus of elasticity, Ec [GPa] 206 206 

Poisson’s ratio, νc [-] 0.3 0.3 

Static friction coefficient, μs  [-] 0.61 0.61 

Dynamic friction coefficient, μ [-] 0.47 0.47 

Entrance distance of rails, L2 [mm] 0, 10, …, 180 0, 10, …, 90 

Exit distance of rails, L1 [mm] 185 90 

 

Fig. 2 shows the geometry of the employed double-cone 
and V-shape rails. Exit distance of the rails is set to a constant 
value of L1 = 185 mm in the case of double-cone 1, and L1 = 90 
mm in the case of double-cone 2 (Table I). On the other hand, 
the entrance distance L2 of the rails is taken as variable, i.e., it 
is adjusted with a pitch of 10 mm, from 0 to 180 mm in the 
case of double-cone 1, and from 0 to 90 mm in the case of 
double-cone 2. For instance, Fig. 3 shows photographs of the 
rolling double-cone 1 for two values of the entrance distance of 
L2 = 0 and 180 mm. 
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Figure 2.  Geometry of the double-cone and V-shape rails. 
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Figure 3.  Photographs of the rolling double-cone 1 for L2 = 0 and 180 mm 

entrance distances. 

Note that for L2 = L1, rails become parallel and in such case 
the double-cone is unable to self-propel along the rails. In fact, 
as it will be discussed later in detail, the double-cone 2 is 

unable to self-propel if L2  80 mm. In order to quantify the 
influence of the entrance distance on the obtained experimental 
results, the opening angle of the rails is defined as (Fig. 2): 

)
2

(sin
0

211

L

LL 
                                                         (1) 

Angle   linearly decreases from its maximal value 
obtained for L2 = 0, which is of 5.307 deg for double-cone 1, 
and of 2.579 deg for double-cone 2, to its minimal value of 0 
deg obtained for parallel tracks (see Fig. 4). 

In order to achieve good repeatability of the experimental 
results, the start point of the rolling tests is taken in such a way 
that the axis of the double-cone is always placed at a distance 
LS = 60 mm, measured from the entrance point along the rails 
(Fig. 2). On the other hand, rolling tests can be conducted only 
if the following geometrical conditions are fulfilled (Figs. 2-8):  

0112 ;2; HRHLLL                       (2) 
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Figure 4.  Variation of the openning angle versus the entrance distance. 

 

The experimental procedure can be summarized as follows: 

1) Aluminum rails, with a height larger than the radius of 

the double-cone (H0  R), are placed on a horizontal table in 
such a way that a V letter is formed. Exit distance is fixed to a 
desired value, which has to satisfy the condition: L1 ≤ 2H. 

2) Variable entrance distance of the rails is adjusted to a 
desired value, which has to satisfy the condition: L2 ≤ L1. 

3) Double-cone is carefully placed on the rails at the start 
position (LS = 60 mm, in Fig. 2), to avoid supplying of input 
kinetic energy into the system. 

4) Double-cone starts to self-propel along the rails due to 
the gained initial potential energy, which is transformed into 
kinetic energy, of rotation and translation (Fig. 12). However, 
for entrance distances close to the exit distance (L2 ≈ L1), the 
double-cone is unable to self-propel along the rails. 

5) In order to easily observe the movement of the double-
cone along the rails, cone generatrix and circular symbols were 
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drawn (Fig. 1). For various opening angles of the rails, movies 
were shot from a convenient position near the exit of the tracks. 
In the same time, the total travelling time T of the double-cone 
was measured by using a stop-watch (see Table II). In order to 
improve the accuracy of the experimental results, for each 
selected opening angle, 3 tests were performed, and the mean 
values were calculated. 

6) Through slow motion processing of the taken movies the 
variable period of rotation Ti (i = 1 – n) and the number of 
rotations n were determined. Summation of all these periods of 
rotation provided also for an estimation of the total traveling 

time of the double-cone 



n

i

im TT
1

 (Table II). Results obtained 

by using the stop-watch and the slow motion processing of the 
movies are in quite good agreement (see Table II). 

 

III. EXPERIMENTAL RESULTS 

Table II presents the variation of the number of rotations n, 
the total traveling time T measured by using a stop-watch, and 
the total traveling time Tm calculated from the recorded movies 
of the double-cones 1 and 2, rolling on V-shape horizontal rails. 

One observes that at augmentation of the entrance distance 
the total traveling time and the number of rotations of the 
double-cone increases. Since the relative difference of the total 
traveling time, measured by stop-watch and also determined 
through the slow motion processing of the movies, is smaller 
than 10%, one concludes that the travelling time of the double-
cone was estimated quite precisely. 
 

TABLE II.  VARIATION OF THE NUMBER OF ROTATIONS, TOTAL 

TRAVELING TIME MEASURED BY USING A STOP-WATCH, AND THE TOTAL 

TRAVELING TIME CALCULATED FROM THE RECORDED MOVIES 

Entrance 

distance L2 

[mm] 

Double-cone 1 Double-cone 2 

n 

[-] 

T 

[s] 

Tm 

[s] 

n 

[-] 

T 

[s] 

Tm 

[s] 

0 16.5 3.94 3.906 17.0 4.09 4.124 

10 17.0 4.27 4.132 17.5 4.72 4.468 

20 18.2 4.49 4.422 19.0 5.26 5.084 

30 18.5 4.66 4.442 20.0 5.93 5.886 

40 20.0 4.93 4.936 22.0 7.13 7.032 

50 20.5 5.20 5.096 27.0 9.08 8.810 

60 21.0 5.51 5.340 30.0 11.97 11.492 

70 22.0 5.90 5.810 36.0 18.77 18.010 

80 23.0 6.30 6.280 --- --- --- 

90 24.0 6.91 6.748 --- --- --- 

100 25.5 7.48 7.340 --- --- --- 

110 27.5 8.48 8.302 --- --- --- 

120 29.3 9.45 9.380 --- --- --- 

130 31.7 10.82 10.578 --- --- --- 

140 34.2 12.98 12.866 --- --- --- 

150 38.0 16.30 15.882 --- --- --- 

160 42.5 19.99 19.476 --- --- --- 

170 49.0 25.92 26.200 --- --- --- 

180 58.0 34.65 38.546 --- --- --- 

IV. THEORETICAL MODEL 

Friction forces, acting in the contact points P and Q during 
the movement of the double-cone on the rails (Fig. 6), are 
vectors occurring along rails, opposing the advance direction of 
the double-cone (Fig. 5): 
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Figure 5.  Upper view of the contact between the double-cone and rails. 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Definition of the rail vectors and friction forces. 

Here NP and NQ are the moduli of the reaction forces acting in 
the contact points P and Q, which can be written as (Figs. 7, 8): 
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Due to the geometrical symmetry of the mechanism relative 
to the Ox axis (Fig. 5), the reaction forces acting in the contact 
points P and Q should have the same moduli, as follows: 

NNNN QP  2

1

2

1

22 sin)cos(sincos   (5) 

Note that, on one hand, in the contact points P and Q, the 
friction forces should be normal on the reaction forces. Thus, 
the scalar product of the vectors describing the friction forces 
and the reaction forces should be nil: 

C
o

n
ta

ct
 

p
o

in
t 

P

L
2

L
1




y

z x

C
o

n
ta

ct
 

p
o

in
t 

Q

L0

O1
Advance direction 

of the double-cone

C
o

n
ta

ct
 

p
o

in
t 

P

L
2

L
1




y

z x

C
o

n
ta

ct
 

p
o

in
t 

Q
C

o
n
ta

ct
 

p
o

in
t 

P

L
2

L
1




y

z xL
2

L
1




y

z x

C
o

n
ta

ct
 

p
o

in
t 

Q

L0

O1
Advance direction 

of the double-cone

 

y

z
x

Q

Rail vector

P

Friction force

)sin(cos, jiNF PPf


 

)sin(cos, jiNF QQf


 

A1

O

A3

A2

A4

)sin(cos021 jiLAA




)sin(cos043 jiLAA




y

z
x

Q

Rail vector

P

Friction force

)sin(cos, jiNF PPf


 

)sin(cos, jiNF QQf


 

A1

O

A3

A2

A4

)sin(cos021 jiLAA


 )sin(cos021 jiLAA




)sin(cos043 jiLAA


 )sin(cos043 jiLAA



 



International Journal of Science and Engineering Investigations, Volume 5, Issue 53, June 2016 4 

www.IJSEI.com           Paper ID: 55316-01 ISSN: 2251-8843 






















0

0

,

,

,

,

QfQ

PfP

QfQ

PfP

FN

FN

FN

FN








                                 (6) 

Condition (6) leads to the following relationship for the 

angle 
1  defined in Fig. 8: 

 tantansin 1                                   (7) 

Result (7) agrees with the previously reported findings [2].  
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Figure 7.  Frontal view of the contact between the double-cone and rails. 

 

Contact 
points P, Q

z

x
O

Advance direction 

of the double-cone

O1

Cone radius, R

Contact radius, r

2

1

cosQN

cosPN

2/
tan

BH

r

H

R




Contact 
points P, Q

z

x
O

Advance direction 

of the double-cone

O1

Cone radius, R

Contact radius, r

2

1

cosQN

cosPN

2/
tan

BH

r

H

R




 

Figure 8.  Lateral view of the contact between the double-cone and rails. 

 

In order to find the relationship between the angles 1  and 

2  (Fig. 8), one firstly searches for the coordinates 

corresponding to the contact points P and Q, for the bottom 
point A5, as well as for the end points A6 and A7 of the double-
cone (Fig. 7): 
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Thus, the generatrix containing the contact points can be 
written as full vectors (Fig. 9): 
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or as partial vectors, as follows: 
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Figure 9.  3D view of the contact line between the conical surface and the 
rail. 

 

Note that, on the other hand, in the contact points P and Q, 
the reaction forces should be normal on the generatrix vectors. 
Thus, the scalar product of the vectors describing the reaction 
force and the generatrix should be nil: 
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Condition (10) leads to the following relationship between the 

angles 1  and 2  defined in Fig. 8: 

0)coscos1sin(sincos 2121                     (11) 

Note that (11) finally reduces to the equality of these angles. 
For this reason, the subscript can be disregarded, as follows: 

  2121 1)cos(                   (12) 

Next, one proves that points P and Q of the contact between 
the double-cone and rails move on the conical surface along a 
three-dimensional (3D) curvilinear trajectory, which is in fact a 
3D logarithmic spiral (see Fig. 9). This can be demonstrated 
under the assumption that the double-cone has a pure rolling 
movement along the rails, i.e., there is no slip at the contact 
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points P and Q between the double-cone and the rails. In such 
circumstances, the distance traveled by the contact point P on 
the straight rail equals the distance traveled by the same contact 
point P along the curved arch of the 3D curvilinear trajectory. 

With this purpose, one evaluates the angle   between the 

generatrix containing the contact point and the corresponding 
rail. Concretely, from the scalar product of the generatrix and 
rail vectors: 

6521

6521cos
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


                                           (13) 

the following relationship for the angle   can be found: 
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Since angle   according to (14) is depending only on the 

apex angle   of the double-cone and the opening angle   of 
the rails, for a given geometry of the gravitational motor, angle 

  appears as constant. Further, it linearly increases from its 

minimal value obtained for L2 = 0, which is of 84.529 deg for 
double-cone 1, and of 87.027 deg for double-cone 2, to its 
maximal value of 90 deg obtained for parallel tracks (Fig. 10). 

Based on this particularity of the angle   one proves, as 

follows, that the contact point moves on the conical surface 
along a path, which is logarithmic spiral [7]. With this purpose, 
first, the 3D conical surface shown in Fig. 9 is developed as a 

circular sector with a radius of sin/R  and an opening angle 

of  sin2  in the plane described by the polar coordinates 

),(   (Fig. 11).  In this plane, the curvilinear contact line can 

be described by the following differential equation [7]: 
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Then, (15) is integrated for all curvilinear paths corresponding 
to rotations of the double-cone from 1 to n, as follows:  

nii
R

,1;]tan)1(2
tan

exp[
sin




 



    (16) 
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Figure 10.  Variation of the angle measured between the rail and the conical 

generatix containing the contact point versus the entrance distance. 
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Figure 11.  2D view of the contact line between the conical surface and the 

rail. 

 

Thus, (16) shows that indeed the contact line is described 
by a logarithmic spiral. Next, rewriting (14) as follows: 






tan

coscos
tan


                                                     (17) 

and imposing the previously argued condition, i.e., the distance 
traveled by the contact point P on the straight rail equals the 
distance traveled by the same contact point P along the curved 
arch of the curvilinear trajectory, one obtains the theoretical 

number of rotations tn  of the double-cone, as follows: 

)tansin1ln(
tan2

1

0

0 



r

LL
n S

t


                    (18) 

Here SLL 0  is the distance travelled by the contact point 

along the rail, and 0r  is the contact radius at the start position 

of the double-cone (see Figs. 2 and 12). In order to determine 
the start contact radius, one firstly observes the relationship 
between the coordinates of the contact point P and the center 
O1 of the double-cone, as follows: 
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Figure 12.  Change in the radius of contact and implicitly, change in the height 
of the mass center due to the movement of the double-cone on the rails. 
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Next, taking into account that the instantaneous contact 
radius satisfies the following equation (see Fig. 8): 

2/
tan

BH

r

H

R


                                                    (20) 

where the instantaneous width of the rails is given by (Fig. 7): 

 tan22 PxLB                                                         (21) 

one finds the following relationship for the contact radius: 

sintan5.0 2 PxLRr                                          (22) 

Then, by substituting the first equation of (19) into (22), the 
contact radius can be rewritten as: 




2

2

cos

sintan5.0
1OxLR

r


                                       (23) 

Since at the start position, the longitudinal coordinate of the 
center O1 of the double-cone is given by (see Fig. 2): 

 cos
1 SO Lx                                                (24) 

the contact radius at the start position becomes: 
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                               (25) 

Substituting (25) in (18) one obtains the theoretical number of 

rotations tn  of the double-cone, as follows: 
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V. RESULTS AND DISCUSSIONS 

Fig. 13 illustrates the variation of the number of rotations 
versus the entrance distance, obtained from the experimental 
data and from the proposed theoretical model, for double-cones 
1 and 2. Number of rotations nonlinearly increases against the 
entrance distance. 
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Figure 13.  Variation of the number of rotations versus the entrance distance, 

obtained from the experimental data and from the proposed theoretical model, 
for double-cones 1 and 2. 

Rate of augmentation is higher for the double-cone 2, which 
has larger apex angle.  

Since the maximum relative difference is smaller than 10 % 
for the double-cone 2, and smaller than 19.7 % for the double-
cone 1, one concludes that the results obtained by using the 
proposed model are in relatively good agreement with the 
experimental results, measured for double-cones made of 
carbon steel, rolling against aluminum rails. Again, proposed 
model is better validated by the experimental results obtained 
for the double-cone 2, which has larger apex angle. 

Although the geometrical and kinematical model proposed 
in this work has somewhat limited accuracy, it might be used to 
design, at least in a first approximation, the gravitational motor. 
Observed differences between the theoretical predictions and 
the measured data might be induced by the influence of 
slippage at the contact points, and also by the influence of the 
friction, which were neglected. Improvement of the theoretical 
model by taking into account these effects will be considered in 
our future work. 

Differentiating the third equation of (19) and also (23), one 
obtains: 






2cos

sin
;cos

1

1 
O

O

dx

dr

dr

dz
                                 (27) 

which leads to the following relationship between the axial and 
vertical coordinates of the center O1 of the double-cone: 

tan

1

1 
O

O

dx

dz
                                                 (28) 

This means that the center O1 of the double-cone moves 
along a straight descending line, which displays a descending 
angle   relative to the horizontal direction (see Fig. 12).  

Result (28) agrees with the previously reported findings [2].  

Thus, the gradual reduction of the contact radius leads to a 
proportional reduction in the height of the mass center z  of 
the double-cone. This causes a proportional decrease of the 

potential energy zmgEp   of the double-cone, from the 

initial input potential energy (see Fig. 12). For this reason, such 
mechanism can be regarded as a gravitational motor, which 
transforms the potential energy into kinetic energy, of rotation 
and translation. 

From a practical standpoint, maximization of the number of 
rotations of the gravitational motor can be required. In order to 
achieve this, one takes the exit distance L1 of the rails at its 
maximal value, which equals the total height 2H of the double-
cone (2H = L1). In such circumstances, the angle   given by 

(7) and (12) reaches it maximal value, as follows:  

2

2

2
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2
max

)2(4

2
sin

LHL

LH
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R




                    (29) 

Additionally, the theoretical number of rotations of the 
double-cone given by (26) reaches its maximal value as 
described by the following expression: 
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max
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tan

)ln(sin




tn                                 (30) 

Fig. 14 illustrates the variation of the maximal number of 

rotations max,tn  versus the entrance distance, as predicted by 

the proposed theoretical model (29, 30), for double-cones 1 and 
2. Similar to Fig. 13, number of rotations nonlinearly increases 
against the entrance distance, the rate of augmentation being 
higher for the double-cone 2, which has larger apex angle. 

Comparison of the results shown by Fig. 13 and Fig. 14 
proves that the number of rotations of the gravitational motor 
can be considerably increased through adequate selection of the 
geometrical parameters. 

 

0 30 60 90 120 150 180

Entrance distance, L2 [mm]

M
ax

im
al

 n
u

m
b

er
 o

f 

ro
ta

ti
o

n
s,

 n
t,

m
ax

[-
]

Double-cone 2

Double-cone 1

101

102

103

0 30 60 90 120 150 180

Entrance distance, L2 [mm]

M
ax

im
al

 n
u

m
b

er
 o

f 

ro
ta

ti
o

n
s,

 n
t,

m
ax

[-
]

Double-cone 2

Double-cone 1

101

102

103

 

Figure 14.  Variation of the maximum number of rotations versus the entrance 
distance, predicted by the proposed theoretical model, for double-cones 1 & 2. 

 

VI. SUMMARY 

In this work, the kinematics of a double-cone self-propelled 
on a straight V-shape horizontal rail was investigated. This 
mechanism was treated as a gravitational motor able to change 
the input potential energy into kinetic energy, of rotation and 
translation. Movies of carbon steel double-cones rolling on 
aluminum rails were shot for various opening angles of the 

rails. Variable period of rotation, the number of rotations, and the 
total traveling time of the double-cone were obtained through 
the slow motion processing of the taken movies. A theoretical 
model was proposed and validated by the experimental results. 
One proved that the point of contact moves on the conical 
surface along a logarithmic spiral. Although the kinematical 
model has somewhat limited accuracy, it might be used to 
design, at least in a first approximation, the gravitational motor. 
If required from a practical standpoint, maximization of the 
number of rotations of the gravitational motor can be achieved, 
based on the model proposed. 
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