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Abstract- In this paper Cassegrain antenna and its geometric 
structure is reviewed and a relation for calculating dimensions 
of its main and subreflector to minimize the blockage is 
investigated. This relation which is a complicated equation 
with respect to several variables is then simplified in the design 
example and expressed versus only one variable. The 
simplified equation is then solved numerically using the 
method of bisection with rapid convergence and high precision. 
The design example clarifies the method more clearly.  
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I. INTRODUCTION 

Dual reflector antennas are wideband and have pencil beam 
and high gain, so they are very common in space 
communication and millimeter wave radio telescopes [1]. Fig. 
1 shows a prototypical Cassegrain telescope which is located in 
West Virginia[1]. These antennas also have applications in the 
structure of instruments which produce plane wave as 
millimeter wave compact antenna test range (CATR) devices 
[2]. Considering the large dimensions of  these antennas ;with 
main reflector diameter usually in the range of 10 meters and 
more, their analysis is carry out using the physical optics (PO) 
method, and other analytical methods such as the method of 
finite elements and the method of moments would be very time 
consuming and require very large computation volume. Design 
equations of this structure are mainly based on the 
mathematical equations of parabolic and hyperbolic surfaces. 

In reflector antennas usually the field strength in the apex 
of reflector is not the same as its value at the edge of reflector, 
and this is called tapering the filed strength. Tapering has direct 
impact on the beam width of the main lobe and side lobe 
levels.  

Fig. 2 depicts the calculated power pattern of a prime 
reflector antenna in logarithmic scale with respect to 

   / sinu d    for various tapering values.   is the 

space angle with respect to the axes  of parabolic reflector[1]. 
Narrowest beam width corresponds to the case of uniform field 
distribution and have largest side lobe level value of about       
(-17dB), while the broadest beam width is related to the case 
which the amount of field at the edge of reflector is tapered to 

zero with respect to the field in the apex of reflector. Anyway 
this case has the lowest side lobe level in the order of -24 dB, 
and may have advantages in some applications. In plotting this 
figure the field distribution of the aperture plane is considered 
as a quadratic function with respect to r; the radius of aperture 
plane; and also is a function of the tapering factor  , as the 

following equation: 

      2 2
1 1 1 1F r r r                                       (1) 

 

 

Figure 1.   schematic of the national radio astronomy observatory (NRAO) 
telescope, located in West Virginia, USA. The reflectors are made from 

aluminum 

 

 

Figure 2.  Variation of main lobe beam width and side lobe level of prime 

reflector parabolic antenna with respect to different tapering factors. 
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Other than the above effects, tapering will have direct 
influence on aperture efficiency and received noise level by 
antenna from unwanted space directions. Reflector antenna 
gain is calculated from the following, 
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                (2) 

Where pA   is the physical aperture area,   is the free 

space wavelength and A  is the aperture efficiency which is 

calculated approximately from: 

A i s p b
                                                                              (3)   

       In (3), i  is called illumination efficiency of aperture and 

relates directly to the field tapering and is calculated by: 
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surface integral is taken over the area of aperture plane and 

 ,rF  is the field distribution on the aperture surface. As is 

seen from Fig. 2, tapering the field distribution reduces the gain 

and indicates that i  reduces by introducing more taper.  

In (3), s  is spillover efficiency and shows the ratio of  

feed energy that reaches to the reflector surface to  total energy 

radiated by the feed. So by increasing the edge taper value s  

increases too and less energy would be dissipated in unwanted 

directions. s  and i  act in reverse manner by changing the 

edge taper value but the product si  peaks to 0.8 for the edge 

taper of about -12 dB. 

In (3), p  is the cross polarization efficiency and depends 

on the unwanted components of field perpendicular to the main 
field direction. Increasing these components would result in 

reduction of p . Cross polarization reduction is one of the 

challenges every one encounters while designing reflector 
antenna systems. Specially in tracking applications, the 
presence of unwanted perpendicular field components would 
increase nothing but extra received noise. This factor depends 
on several parameters like the ratio of focal length to the 
antenna diameter, field distribution of feed antenna,  roughness 
of the reflector surface and etc. Dual reflector antennas like 
Cassegrain antenna have less cross polarization component 
since they have larger effective ratio of focal length to main 

reflector diameter and have larger p .  

In (3), b  is the blockage efficiency and is due to blocking 

the waves by obstacles placed in front of the main reflector, 

like the feed antenna or subreflector, etc. For acceptable b  in 

reflector antennas, diameter of subreflector or feed antenna 
placed in front of the main reflector must be less than 0.1 

diameter of the main reflector antenna. To obtain optimum b  

in Cassegrain antenna, subreflector diameter may be equal to 
the shadow made by feed antenna on the reflector surface.  

In this paper after introducing the mathematical relations 
that govern the conical surfaces and Cassegrain antenna, 
method of bisection in solving nonlinear equations is reviewed 
in sections 2 and 3 respectively. Design example of this kind of 
antennas is presented in section 4 to illustrate the problem more 
clearly. 

 

II. CONICAL SECTIONS 

Parabola, hyperbola and ellipse are created when a plane 
crosses a cone in different directions. Generally speaking, a 
conical surface or curve is the locus of all points that their 
distance from a fixed point called focal point be e times their 
distance from a fix line, called directrix. Coefficient e is called 
eccentricity. In ellipse e is less than 1, while in parabola it 
equals 1 and in hyperbola is greater than 1. ellipse and 
hyperbola have two focal point while parabola have one. Fig. 3 
depicts a conical curve. In this figure, conical point is presented 
by F. the distance of F to directrix line is assumed equal to c, 
while the distance of curve apex to directrix line is taken equal 
to a, as indicated in the figure. Parabolic or hyperbolic equation 
in polar coordinate system using the above definition is 
exploited here.  

Assume that the origin point be located on F and the axes 
of the curve be placed on x axes. Considering Fig. 3, we have,  

  

  

cos

1 cos

XF eXZ r e c r

r e ec


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  
                                    (5) 

so, 

  1 cos

ec
r

e 



                                                                 (6) 

 

 

Figure 3.   A hyperbolic or parabolic conical section which its focal point, F, 
is located on the Origin, O, and its axes is placed on x-axes, directrix line is 

parallel to the y-axes. The conical section is a parabola if e=1 and a hyperbola 

if e>1.  
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In  a parabola, e=1, c=2a . so the above equation becomes, 

  
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
                                                                 (7)   

while in the hyperbola, (6) turns into,  
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By rotating parabola or hyperbola along its axes by 360 
degree, parabolic or hyperbolic surfaces create, which have 
wide applications in designing Cassegrain antennas. 

 

III. GEOMETRIC STRUCTURE OF CASSEGRAIN 

ANTENNAS 

In Fig. 4, geometric structure of Cassegrain antenna is 
indicated. This structure is created from a parabolic main 

reflector with diameter PD  and focal length PF , a hyperbolic 

subreflector with diameter SD  and focal length SF  and a feed 

antenna. Phase center of the feed antenna is presented by the 
left cross sign in the figure and is located on one of the focal 
points of the hyperbolic surface. another  focal point of the 
subreflector is illustrated by the right cross sign in the figure 
and is located on the focal point of the parabolic main reflector. 
The angle of edge rays hit from feed antenna to the subreflector 

is indicated by 0 , and that’s of main reflector is stated by 0 . 

Feed antenna is assumed here as conical corrugated type, 
which has less cross polarization field components with respect 
to ordinary circular horn antenna. It has almost the same E and 

H pattern. In the figure, FS  is a parameter which presents the 

amount of displacing the phase center of the feed with respect 
to the feed aperture. It depends on the slant radius of horn and 
wavelength, etc. waves leaving the feed antenna, hit the 
subreflector as plane waves.  

From Fig. 4 and equ. (7), 0 and 0 can be obtained versus 

/
p p

F D and /
e p

F D respectively. In the main reflector, 

distance between focal point and the edge of reflector is 
obtained from (7) as, 
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on the other hand, 

 
0 0

sin
2

p
D

r                                                                       (10) 

from (9) and (10), 
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similarly,  
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The ratio of effective focal length eF  to pF  is called 

antenna magnification, M. relation between M and eccentricity, 
e, is, 

1

1

M
e

M


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
                                                                              (13) 

eccentricity also may be obtained versus 0  and 0  as, 
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In designing antenna, the main reflector diameter usually is 
calculated from communication link budget and mechanical 

considerations. The ratio of /
p p

F D  is usually chosen between 

0.25 and 0.5 and M is selected larger than 1 to reduce cross 

polarization field components. Knowing M, the /
e p

F D ration 

will be known too. From (11) and (12), 0 and 0  is gotten. 

So the parameters ,
p p

F D  , 0  and 0  in Fig. 4 are all 

known.  

 

 

Figure 4.  Geometric structure of Cassegrain antenna system.  

 

Now a proper feed antenna must be chosen with less cross 
polarization field components and with ability to illuminate the 
edge of reflector with filed taper equal to about  -12 dB with 
respect to  reflector center. Considering Fig. 4, it is clear that 
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for fixed 0  and 0 , whatever the feed be placed farther than 

subreflector, the subreflector diameter SD  must be larger to be 

able to cover the beam limits, and that will lead to greater 

blockage against the main reflector and reduces b . On the 

other side if the feed antenna be located very close to the 

subreflector, SD , can be made smaller, but the shadow of the 

antenna feed created on the main reflector would be large 
enough to increase the blockage effect again, so in optimum 
case, the feed position must be determined in such a way that 
subreflector diameter and the shadow of feed antenna against 
the main reflector become equal. To do this, we need some 
extra information about feed antenna, like feed antenna 
aperture diameter and the phase center position of radiated 
fields. 

 Physical shape of a typical feed antenna is shown in Fig. 5. 
In Cassegrain antennas, the feed may be located in a protection 
cavity against humidity and rain effects, so its effective 
diameter may be larger than antenna aperture diameter. In Figs. 
5, 7, the sum of feed aperture diameter plus protective cavity 
thickness is named as the feed diameter, AF.  

Corrugations in the internal surface of the horn generate 
hybrid modes which have lower cross polarization components 
with respect to dominant TE11 mode in ordinary conical horn. 
Dimensions of the structure depends on the antenna gain, the 
required  edge tapering off the field, design frequency and 
mechanical considerations and is based on Fig. 6 [4]. In this 
figure S parameter is defined as: 

2

2

a
S

R
                                                                           (15)  

where a is the radius of feed aperture,   is the free space 

wavelength and R is the radius of curvature of the horn. 

In designing the feed, S parameter may be chosen 
arbitrarily, knowing the required amount of edge tapering of 

the beam and 0 , from Fig.6, the amount of  
0

2
sin

a



 will 

be known too, and so the feed aperture radius, ”a”, will be 
obtained.  

 

 

Figure 5.  Physical structure of a prototypical conical corrugate horn antenna 

 

Figure 6.   radiated power of the corrugated horn antenna with respect to 

radiation angle and for various S parameters.  

 

 

Figure 7.  Geometric description of the blockage effect made by feed shadow 

on the main reflector.  

 

 

Figure 8.  Geometric parameters of hyperbolic section. 



International Journal of Science and Engineering Investigations, Volume 6, Issue 60, January 2017 198 

www.IJSEI.com            Paper ID: 66017-28 ISSN: 2251-8843 

Knowing S parameter and feed aperture radius, slant radius 
of the horn, R, is determined from (15) and the ratio of phase 

center displacement of the feed, FS   to R is determined from 

[4]. By obtaining AF and FS , using the theory of physical 

optics, a relation can be obtained to equalize the subreflector 
diameter with the feed shadow on the main reflector.  

 In Fig. 8, hyperbolic conical section is depicted which 
consists of two curves and two focal points. Focal point 

distance is cFS 2 , and the distance between apex of  curves 

is 2a. The left hyperbolic curve which is shown by dashed line 
in this figure does not exist physically in Fig. 4. The 
eccentricity coefficient, e, in Fig.8 is obtained as: 

c a
e

a


                                                                                 (16)  

To determine the geometric shape of hyperbolic, two 
parameters, a and c must be known.  

To obtain a relation between subreflector diameter, SD ,  

and 0  angle, we have from (8): 
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To determine diameter of the shadow of the feed on the 
main reflector, FB, one may use (7) together with Fig.7.    

angle is calculated as: 
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using (7): 
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so, 
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by equating (22) and (19), 
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in (23),   2 2 1
S

F c a e   , so (23) may be written as 
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As explained earlier, in (24), all parameters except for a is 
known. equation. (24) is a nonlinear equation with respect to 
“a” and cannot be solved simply. Among different numerical 
methods for solving this equation, one must use a simple 
method with low calculation volume and rapid rate of 
convergence. The method of Bisection is used here for this 
purpose. The Bisection method is one of the bracketing 
methods in which we seek the root of function in a special 
interval. The algorithm is as follows [5]. At first by sketching 
the function in a special interval we seek for any point that 
function crosses the horizontal axes. Then a suitable interval is 
chosen [j,k], where j and k  are points at the left and right of the  
approximate root respectively and f(j)f(k)<0. The distance 
between j and k then divides into two sections with the middle 
section called c. the amount of function in this point, f(c), is 
then calculated. c will be closer than j and k to the root point. 
Now if f(c) satisfies the required precision for the problem 
under hand, we stop at this point, otherwise we choose the new 
interval  [c, k] if  f(c)f(k)<0, or [j,c] if f(c)f(k)<0 to seek for the 
root position again. This process is repeated until the satisfied 
precision is obtained or the number of iterations exceed than 
maximum required. In continue we explain all the above 
mentioned by a numerical example. 
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IV. NUMERICAL EXAMPLE IN DESIGNING 

CASSEGRAIN ANTENNA SYSTEM  

Assume that the main reflector diameter, PD , be 10 m 

considering communication link budget and mechanical 
limitations. The center frequency of operation for a X-band 

radar is taken as 10 GHz. We choose 5.0/ pp DF , so the 

focal distance of parabolic surface would be 5 (m).  By 
selecting antenna magnification, M, equal to 4:   

 / 4 20
e p e

F F F m    

from (13): 

4 1 5

4 1 3
e


 


 

from (11), (12),  
0

53.1   and 
0

14.2   . By taking 

S=0.2, for conical corrugated horn feed, and assuming -12 dB 
edge taper for illumination of reflectors, observing Fig. 6,  
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feed  aperture diameter then is: 

   3.5 0.03 / (2 sin 14.2 ) 6.8a cm     

the thickness of shield surrounding the feed is taken equal to     
2 cm so, 

 2( 2) 17.6AF a cm    

from (15),  R  is obtained. As mentioned earlier, R is used in 
relations for determination of the phase center displacement of 

the feed, FS . We have: 
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from [4],  

 0.124 4.7
F

S R cm    

Now all parameters in (24) are specified except for “a”. To 

solve this equation by the method of Bisection,   afy    is 

plotted by [6],  in the interval [0,5] in Fig. 9. The interval is 
chosen according the physical structure of the problem. Since 
we assume that feed antenna is placed in the space between the 
main reflector and subreflector, considering the origin point 
located at the focal point of the main reflector, referring to Fig. 
8 the amount of 2a would be greater than zero and less than 5 
(m) in this problem. To investigate the possibility  of existing 

zero of  afy  , beyond this distance, we may plot this 

function in [0, 5]. As  seen from Fig. 9, the root is placed in 
[0.1, 0.4] interval, where f(0.1)f(0.4)<0. The algorithm for root 
finding by the method of Bisection is implemented in 
MATLAB software [6]. While running the program, it is 

assumed that the precision be better than 0.01 or the iteration 
numbers does not exceed 20 times. After 7 iteration the 
approximate root, a=0.3086, is obtained. Steps of this process 
are summarized in Table 1.   

After determination of “a”, other physical parameters of the 

subreflector like SD , SF  will be obtained . From (19), 
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Figure 9.  Variation of (24), in the design example versus variable “a” which 

is half the distance between hyperbola apexes, shown in Fig. 8. 

 

TABLE I.   ITERATIONS OF THE IMPLEMENTED ALGORITHM IN SOLVING 

(24) FOR THE DESIGN EXAMPLE.  

c  f c  iteration 

0.25 0.4737 1 

0.325 0.1138 2 

0.2875 0.1585 3 

0.3063 0.0180 4 

0.3156 0.0489 5 

0.3109 0.0157 6 

0.3086 0.0011 7 

 

 

and since  2 2 1
S

F c a e   , we have: 

   2 0.31 1 (5 / 3) 1.65 )
S

F m      

so the phase center of feed antenna must be 3.35 (m) apart 
from the main reflector apex. The steps of designing antenna 
dimensions in this example, is now over. 

 

V. CONCLUSION 

In this paper Cassegrain antenna system specifications are 
reviewed. Using the physical optic method and aiming 
mathematical relations of parabolic and hyperbolic surfaces, 
we get a nonlinear and complex function with respect to 
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antenna parameters. This equation is then approximately solved 
using the method of Bisection. A design example for radar 
applications in X-band is presented which explains the method 
clearly. 
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