
 

 
78 

International Journal of 

Science and Engineering Investigations                        vol. 6, issue 70, November 2017 

ISSN: 2251-8843 

Mathematical Analysis of Lengyel-Epstein Chemical Reaction 

Model by Fractional-Order Differential Equation’s System with 

Multi-Orders 
 

Bahatdin Daşbaşi
1
, Teslima Daşbaşi

2 

1
Erciyes University, High School of Applied Sciences,  

Department of Accounting and Finance Management, TR-38039, Kayseri, Turkey 
2
Cumhuriyet University, Department of Chemical and Chemical Processing Technologies, 

Gemerek Vocational High-Schools, TR-58840, Sivas, Turkey 
 (1dasbasi_bahatdin@hotmail.com, 2teslimadasbasi@hotmail.com) 

 
 

 
Abstract-The proposed model in this study is the fractional 
differential equation’s system with multi-orders  of the 
dimensionless Lengyel-Epstein model being the oscillating 
chemical reactions. It is founded the positive equilibrium point. 
Also, the stability of the positive equilibrium point obtained 
from this system is analysed. The results founded from this 
qualitative analysis are corroborated by numerical simulations 
drawn by various programs. 
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I. INTRODUCTION 

The oscillating chemical reactions as the Belousov-
Zhabotinsky reaction and the Briggs-Rauscher reaction are 
well known. The mathematical models of these reactions are 
analyzed mathematical; on the other hand, these models are 
complicated. The Lengyel-Epstein reaction involved chlorine 
dioxide (    ), iodine (  ) and malonic acid (  ) is simpler 
reaction according to these. The reactions [1] are: 
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It was negotiated a mathematical modeling for the variables 
  and   which related to the iodide concentration (  ) and the 
chlorite concentration (    

 ). This model is the system which 
occured from two differential equations. The change rates of 
the concentrations of variables have to be adjusted via 
experiments and it is not easy that the reactions transform to 
the differential equations. Let   and   is the concentrations of 
iodide and chlorite respectively. Therefore, the proposed rate 
equations are given by 

  

  
   

[  ][  ]

   [  ]
   [    ]   (  [ 

 ]     [  ]
  

    
)  

  

  
   [    ]  (  [ 

 ]     [  ]
  

    
)  

(2) 

where the    for           are rate constants and   
(mass/volume)2 is a constant too. The rate equations have 
applied to all molecules and ions involved in the process. [2]. 
However, it can be specificated throughout experiments that 
the iodide and chlorite concentrations must change more 
rapidly than other molecules. In this sense, it is feasible to 
presume for easiness which it remains constant the 
concentration of other molecules as long as reaction. Therefore, 
this assumption does not have to be applied. Nevertheless, We 
have to choose to approach real values in all mathematical 
modeling. After choosing the right direction for sustainability, 
the    term will come to ignore too as in the Lengyel and 
Epstein [3] for no obvious reason except perhaps, since it is 
certain that the hydrogen concentration (  ) , which is the 
lightest nucleus, is very small. The above-mentioned 
hypotheses causes to the differential equation’s system as the 
following; 
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For a better application in mathematical modeling, It is 
necessitated that mathematical models are to be made 
dimensionless. This situation is succeeded by changing the 
variables 
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and two lumped parameters which are dimensionless are 
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After all these operations, the Lengyel-Epstein model is as 
the following [2]: 
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Fractional-order differential equation have been the focus 
of many studies, since their very often appearance in various 
applications in biomathematics, fluid mechanics, economic, 
viscoelasticity, biology, physics and engineering. Recently, a 
large quantity of literature has been developed concerning the 
application of fractional differential equations in nonlinear 
dynamics [4,5,6,7,8,9]. 

 

II. ASYMTOTIC STABILITY OF THEIR EQUILIBRIUM POINTS 

IN THE FRACTIONAL-ORDER DIFFERENTIAL EQUATION’S 

SYSTEM 

Definition 2.1 The fractional integral of order      of 
the function  ( )     is definable by 
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(   )   
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 ( )  
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and the fractional derivative of order   (     ]  of 
 ( )     is defined by  

   ( )         ( )   
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The following properties are some of the main properties of 
the fractional derivatives and integrals. 

Let        and   (   ]. Then
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      , and if  ( )    , then   
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 ( )   ( ) weakly. 

iv. If  ( )  is absolutely continuous on [   ] , then 
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. 

v. If  ( )     ,   is a constant, then       [6]. 

Theorem 2.1 The fractional differential equation’s system 
with multi-order is as the following 
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  is the multi-order of system of (9) and 
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   denotes   th-order 

fractional derivative in the Caputo sense. In this sense, 
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. From a 

mathematical point of view, the multiple orders can be any real 
vector even complex one. In this study, It has considered that 
the real case. In engineering applications,    often lies in (   )  
and is a rational number related to physical measure. For this, 
in the paper we presume    to a rational number in (   ) 
[10,11]. 

Theorem 2.2 It is assumed that  ( )  is jacobian matrix 
evaluated at equilibrium point  . This point of the system (9) is 

asymptotically stable if all eigenvalues obtained from the 
polynomial 

   (    (                )   ( ))      

satisfies |   ( )|   
 

 
 [10]. 

Lemma 2.1 Consider definition 2.1. Also, let       
  (   ]  and   (   )  if    [   ] , then    ( )|     . 
In this respect, taking into consider the following system 
[11,9,12,13,5,6]. 
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with the initial conditions 

  ( )              ( )               (11) 

 

 

Figure 1.  [4] Stability region of fractional-order system in (10). 

 
For evaluate the equilibrium points, we have presumed that 

    ( )      (  
  
   
  
)    for      . In this sense, we 

have the equilibrium point (  
  
   
  
)  of system (10). 

Additionally, the Jacobian matrix is used as   [

   

   

   

   
   

   

   

   

], is 

used. If all of the eigenvalues    and    which  obtained from 

the equation   (     ) (  
  
   
  
)    satisfies the conditions 

(|   (  )|  
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then, the equilibrium point (  
  
   
  
) is locally asymptotically 

stable point for system (10). The stability region of the 
fractional-order system by  -order is showed in Figure 1 (in 
which     refer to the real and imaginary parts of the 

eigenvalues, respectively, and   √  ). From here, it is 
frankly seen that the stability region of the fractional-order case 
is broader than the stability region of the integer-order case 
[4,14,15]. 

The characteristic equation obtained from 

  (     ) (  
  
   
  
)    is such as the following generalized 

polynomial: 



International Journal of Science and Engineering Investigations, Volume 6, Issue 70, November 2017 80 

www.IJSEI.com            Paper ID: 67017-12 ISSN: 2251-8843 

 ( )                         (13) 

Let us consider the conditions (12) and the polynomial 
(13). Therefore, the conditions for locally asymptotically 

stability of the equilibrium point (  
  
   
  
) are either Routh–

Hurwitz conditions (       ) [16] 

or: 
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 Theorem 2.3 (Routh-Hurwitz Criteria): The charasteristic 
polynomial is 
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where the    coefficients for           are real constants. the 
  Hurwitz matrices by the coefficients    of upper polynomial 

are    (  ) ,    (
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,… where 

     if    . The roots of polynomial  ( ) are negative or 

have negative real parts, iff the determinants of all Hurwitz 
matrices are positive:                    . In terms of 

convenience, , the Routh-Hurwitz criteria for polynomial of 
degree         and   are summarized as the following. 
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This criteria has given necessary and sufficient conditions 
for the roots of the characteristic polynomial (with real 
coefficients) to lie in the left half of the complex plane [17,18]. 

 

III. THE FRACTIONAL-ORDER LENGYEL-EPSTEIN CHEMICAL 

REACTION MODEL WITH MULTI-ORDERS  

The proposed model in this study is fractional multi-order 
differential equation system form of Lengyel-Epstein model 
suggested in (6). Therefore, it is obtained the following system 
of two fractional-order differential equation: 
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with initial conditions  ( )     and  ( )    . In addition 

that, it is assumed that       (   ] ,    
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  { } and the smallest common 

multiple of     and    is  . 

Stability conditions of equilibrium point obtained from 
    ( )      ( )    for system (15) are that  

   (    (         ))    satisfy |   ( )|   
 

 
. 

A. Qualitative analysis of system (15) 

The existence and stability of equilibria of the system (15) 
are characterized in here. 

Proposition 3.1 (Equilibrium Points) The system (15) 

always has the equilibrium point   (
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)
 

  ), namely 

positive equilibrium point. 

Proof. We have assumed that the general term of equilibria 
of the system (15) showed as (       ) . For equilibrium 
solution of (15), we have 
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and so, 

     
  

    
  

  (  
 

    
)    

           (17) 

From second equation of (17), it is obtained         or 
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)   . In first equation of (17), these values are 

written, respectively. Firstly, let      . We have 

contradicted due to     (      in (5)). Lastly, let (  
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)   , that is,   (   )   . In this case, it is  
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Therefore, we have the positive equilibrium point founded 
the following 
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Proposition 3.2 (Stability Analysis) If |   ( )|   
 

 
 

(when some conditions are met) for the eigenvalue   

(
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  ), then this point is locally asymtotically stable 

(LAS) for system (15). 

Proof. For the stability analysis, the functions of the right 
side of the system (15) are determined as follows: 
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That Jacobean matrix obtained from (19) is: 
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For ease of examination, the  -th eigenvalue of equilibrium 

point   (
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  ) was shown as    for      . Thus, 

the Jacobean matrix evaluated at this point is: 
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it is founded that: 

   (     )       
  

 ((
 

 
)
 
  )

      (
   (

 

 
)
 

(
 

 
)
 
  
)  

   

(
 

 
)
 
  
        (22) 

Stability conditions of equilibrium point for system (15) are 

that the equation (22) satisfy |   ( )|   
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In case of special case       
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)  by (22).    ( )  is positive 

due to parameters are positive and if   
√              
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, then   ( )  is negative. Therefore the 

equilibrium point   (
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IV. NUMERICAL STUDY FOR SYSTEM (15) 

In here, we have examined the behavior of the solutions of 
system (15) by valuing the parameters. We have used Matlab 
and pplane.jar. In this respect, it is obtained the following the 
results. 

Let    
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by (22), and so, Routh-Hurwitz stability conditions (   ) 

are satisfied, because    
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. Thus,   (

 

 
 
  

  
) is LAS as seen in figure 2. 

 

 

Figure 2.  For    
 

 
    

 

 
          ( ( )  ( ))  (   ), 

Temporary course of variables of system (15). 

 

Let    
 

 
    

 

 
 (   )          and 

( ( )  ( ))  (   ). In this case, we have 

    
  

  
  

    

  
    

by (22), and so, Routh-Hurwitz stability conditions (   ) are 

satisfied, that is,     
  

  
 and     

    

  
 are positive. Thus, 

  (    ) is LAS as seen in figure 3. 

 

 

Figure 3.  For    
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Temporary course of variables of system (15). 
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When             
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, charasteristic 

equation is                 In this respect, the 
eigenvalues from charasteristic equation            , 
                      ,              
         ,                       and    
                  . 

 

 

Figure 4.  When             
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, The representation of 

eigenvalues in complex plane. 

 

It is clear that |   {        }|   
 

 
  

 

  
. On the other 
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Therefore   (   )  is LAS for system (15) as seen in 
figure 5. 

 

 

Figure 5.  For    
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Temporary course of variables of system (15). 

When                 , charasteristic equation is 
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. It is clear that      and     . 

Therefore,   (    ), namely nodal source, is unstable point. 

 

 

Figure 6.  For                  and  ( ( )  ( ))  (   ), 
Temporary course of variables of system (15) via pplane.jar 

 

V. APPENDIX 

The Matlab codes used for the shapes drawn in this work are 
below: 

Lengyel M-file 

function [T, Y]=lengyel(parameters, orders, TSim, Y0) 

h=.0001; 

% number of calculated mesh points: 

n=round(TSim/h); 

%orders of derivatives, respectively: 

q1=orders(1); q2=orders(2); 

% parameters of infection model: 

a_1=parameters(1); a_2=parameters(2); 

% binomial coefficients calculation: 

cp1=1; cp2=1; 

for j=1:n 

c1(j)=(1-(1+q1)/j)*cp1; 

c2(j)=(1-(1+q2)/j)*cp2; 

cp1=c1(j); cp2=c2(j); 

end 

% initial conditions setting: 

x(1)=Y0(1); y(1)=Y0(2); 

% calculation of phase portraits /numerical solution/: 

for i=2:n 

x(i)=(a_1-x(i-1)-4*x(i-1)*y(i-1)/(1+x(i-1)*x(i-1)))*h^q1-memo(x, 

c1, i); 

y(i)=(a_2*x(i-1)*(1-y(i-1)/(1+x(i-1)*x(i-1))))*h^q2-memo(y, c2, i); 

end 

for j=1:n 

Y(j,1)=x(j); Y(j,2)=y(j); 

end 

T=0:h:TSim; 
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Run M-file 

close all; clear all; 

[t, y]=lengyel([5 2], [1/4 1/6], 70, [1 1]); 

A=1:1:700000'; 

figure; plot(A, y(:,1)); 

figure; plot(A, y(:,2)); 

figure; plot(A, y(:,1), A, y(:,2)); title('In case of alpha1=1/4 and 

alpha2=1/6, The dependent time concentrations of iodide and 

chlorite'); 

figure; plot(y(:,1),y(:,2)); title('In case of alpha1=1/4 and alpha2=1/6, 

The relative to each other concentrations of iodide and chlorite'); 

 

Memo M-file 

function [yo] = memo(r, c, k) 

temp = 0; 

for j=1:k-1 

temp = temp + c(j)*r(k-j); 

end 

yo = temp; 
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