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Abstract- Five (5) Compartmental model of (S, E, Q, I, R) 
were presented to have better understanding on the effect of 
quarantine of exposed individuals in the dynamical spread of 
Diphtheria disease in the population. The stability of the 
model was analyzed for the existence of disease free and 
endemic equilibrium points. Basic Reproduction Number (R0) 
was obtained using next generation matrix method (NGM), 
and it is shown that the disease free equilibrium point is 
locally asymptotically stable whenever the basic reproduction 
number is less than unity i.e. (R0˂1) and unstable whenever 
the basic reproduction number is greater than unity 
(R0˃1).The basic reproduction number which is the number of 
new infected individual generated by a single infectious 
individual is a very important tool that helps in determining 
whether the disease persists and become endemic or dies out 
in the society. The model was solved numerically using the 
mathematical software (MAPLE) and the results were 
presented graphically.  It was discovered that the higher the 
quarantine rate of exposed individual the lower the 
reproduction number and less is the infected individuals. 
Therefore, effort should be put in place in intensifying the 
quarantine rate of the disease so as to have the basic 
reproduction number not greater than unity, in order to 
prevent the endemic situation. 

Keywords: Diphtheria, Reproduction Number, Stability, 
Critical Point, Numerical Simulation 

 

I. INTRODUCTION 

Diphtheria is an infectious disease caused by bacteria 
belonging to Corynebacterium species that generally produces 
exotoxins that injure human tissue. [15].Diphtheria disease 
has been infecting human population for centuries. The first 
documented description of diphtheria was produced by 
Hippocrates in the fifth century BC. The disease has been a 
leading cause of death in children for many years and this 
deadly disease continues to kill many children in 

industrialized and developing countries [14]. A large 
percentage of adults in many modern and developing 
countries are now vulnerable to diphtheria disease. Quite a lot 
of developed and developing countries where exposure has 
been very high for 5-10 years have reported diphtheria, even 
though the prevalent use of immunization. Diphtheria remains 
endemic in numerous regions [9] such as Brazil [6] the tropics 
and areas of South America [4], [12], also in Africa, India 
[14]. Since the beginning of 1990, diphtheria disease has re-
emerged in the Russian Federation and spread across all 
Newly Independent States (NIS). Percentage of diphtheria 
cases in children greater or equal to 15 years old ranges from 
64% to 82% annually. By the beginning of 1999, the 
diphtheria epidemic had caused over 157,000 cases and 5000 
deaths. Adults between 40 and 49 years old had tremendously 
high occurrence, which accounted for almost half of all deaths 
in various countries. Older adults of over 50 years of age had 
fairly few cases [9]. Without difficulty, the organisms attack 
the tissue lining the throat, and at some stage in time, they 
produce exotoxins that damage the tissue and lead to the 
development of a pseudomembrane [2], [3].  The initial 
symptoms of diphtheria disease are flu-like but aggravate to 
include coughing, swallowing problems, hoarseness, fever, 
enlarged lymph nodes, and shortness of breath; some patients 
may have skin involvement, which may later produce skin 
ulcers. Poor health and depressed respiratory defense 
mechanisms contribute to the cause of diphtheria[7]. 
Mathematical epidemiology has greatly contributed to the 
understanding of the behavior of infectious diseases, its 
impacts and possible future predictions about its spreading. 
Mathematical models are used in comparing, evaluating, 
planning, implementing and optimizing various prevention, 
detection, control programs and therapy [17]. 

The term quarantine is often erroneously used to mean 
medical isolation, which is "to separate ill persons who have a 
communicable disease from those who are healthy whereas  
quarantine requires separation and restriction of movement of 
people who may have been exposed to a contagious illness, 
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but do not have symptoms to see if they become sick and 
these individuals may or may not be contagious [5]. 

In this paper, a mathematical model for the transmission 
dynamics for diphtheria is developed. This model 

demonstrates how quarantine of exposed individuals could be 
used to reduce the population of individuals infected with 
diphtheria disease in the community. 

 

 

 

Figure 1.  Schematic Diagram 

 

 

II. MATHEMATICAL MODEL FORMULATION 

The population size at time t denoted by N (t) is sub-
divided into five (5) compartments of Susceptible individual 
S(t), Exposed individual E(t), Quarantine individual Q(t), 

Infected individual, ( )I t  and Recovered individual R(t)  so 

that   

( ) ( ) ( ) ( ) ( ) ( )N t S t E t Q t I t R t                             (1) 

The susceptible population is increased by the recruitment 
of people (either by birth or immigration) into the population, 
all recruited individuals are assumed to be susceptible at a rate 
 , the population of Susceptible is further increased by the 
population of individual that are recovered at the rate ( ). 

Finally, the susceptible population decreases by infection 

which can be acquired following effective contact rate   and 

also by natural death at the rate (  ). Hence, 

dS
SI S R

dt
                                                 (2) 

A proportion (1 ) of newly infected individuals that 

produce active diphtheria move to the exposed class E, while 
the remaining proportion   move to the infected class I. The 

population of exposed class is reduced by the natural death 
rate (  ), quarantine rate (  ) and the progression rate ( ). 

Hence,  

 (1 ) ( )
dE

SI E
dt

                                   (3) 

The population of quarantine individual is increased by the 
quarantine of exposed individual at the rate (  ). The 

population later decreased by the natural death rate (  ) and 

the rate at which the quarantine individual recovered ( ). 

Hence, 

( )
dQ

E Q
dt

                                   (4) 

The population of Infected diphtheria individual is 
increased by the remaining proportion of individual that 
produce active diphtheria at the rate (  ) and the progression 

of exposed diphtheria individual at the rate (  ). The 
population is decreased by the treatment of diphtheria infected 
individuals at the rate (  ), natural death of diphtheria 

infected individual at the rate ( ) and the disease induced 

death at the rate ( ). Hence, 

( )
dI

SI E I
dt

                                    (5) 

The population of Recovered diphtheria individual is 
increased by the number of infected individuals that are 
treated at the rate ( ) and the exposed individual quarantined 

at the rate )( . The population is decreased by the natural 

death rate of recovered individual at the rate (  ) and the 

recovered individual at the rate ( ). Hence, 

( )
dR

I Q R
dt

                                  (6) 
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Thus in summary, the dynamics transmission model is 
given by the following system of non-linear differential 
equations. 

1

2

3

4

(1 )

dS
SI S R

dt

dE
SI K E

dt

dQ
E K Q

dt

dI
SI E K I

dt

dR
I Q K R

dt

   

 



 

 

   

  

 

  

  
















            (7) 

Where 

1 2

3 4

( ), ( ),

( ), ( )

K K

K K

    

    

    

    
 

 

III. POSITIVITY OF SOLUTION 

For this model it can be shown that the region 

5
{( ) : / }D S E Q I R R N  




                   (8) 

For Diphtheria model to epidemiological and 
mathematically well posed. We need to prove that all state 
variables are non-negative for all 0t   

Consider the biologically-feasible region D


, defined 
above. The rate of change of the total population, obtained by 
adding all equations of the model (7), is given by 

dN
N

dt
                           (9) 

In the absence of disease induce death,  

N
dt

dN
   

It follows that 0
dN

dt
  whenever N




 . Furthermore, 

Since
dN

N
dt

   , it is clear that ( )N t



  if (0)N




 .

 

TABLE I.  DESCRIPTION OF VARIABLES 

Variables Definitions 

S Susceptible individual 

E Exposed individual 

Q Quarantine individual 

I Infected individual 

R Recovered individual 

 

 

 

TABLE II.  DESCRIPTION OF PARAMETERS 

Parameters Definitions 

π Recruitment rate into the population 

ρ Proportion of new infection that produce active diphtheria 

υ Rate at which quarantine individuals recovered. 

ω Treatment rate of infected individuals. 

μ Natural death rate 

κ Progression rate 

σ Loss of immunity 

δ Induced mortality rate 

β Effective contact rate 

γ Quarantine rate of exposed Individuals. 

 

 

Therefore, all solutions of the model with initial conditions 

in D

remain in D


for all 0t  (i.e., the  -limits sets of the 

system (1) are contained in D


). Thus, D


is positively-

invariant and attracting. In this region, the model can be 
considered as been epidemiologically and mathematically well 
posed. 
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A. Disease Free Equilibrium 

For critical points, we set 

dS

dt
=

dE

dt
=

dQ

dt
=

dI

dt
= 0

dR

dt
                       (10) 

At disease free equilibrium, it is assumed that there is no 
infection; Hence (DFE) is given as: 

0
( , , , , ) , 0, 0, 0, 0S E Q I R





 

 
 
 

 

B. Endemic Equilibrium 

The endemic equilibrium of the model (7) is given below; 

* 1 3

* 2 3 4

* 3 4

* 2 4

* 3 2 1

( 1)

( 1)

( ( 1) ( )

K K
S

C

B K K K
E

AC

B K K
Q

AC

BK K
I

A

B K K K
R

A





 

     











   


















         (11) 

Where 

1 2 3 4 3 2 1

1 1 3

1

( ( 1) ( ))

( )

( )

A K K K K K K K

B K K K

C K

     

    

  

     

   

  

 

C. Basic Reproduction Number R0 

Basic reproduction number is an important notion in 
epidemiological models and is the usually denoted by R0. This 
number can be defined as the expected average number of 
secondary infection generated by infected infectious 
individual in his/her infectious period in the susceptible 
population. 

The basic reproduction number of the model (7) is 
calculated by using the next generation matrix [10]. Using the 
approach, we have,    

1

2

3

4

(1 )

0

0

I

F

I

K E

E K Q
V

E K I

Q I K R


 












 












 

 
  
  
  
  
  
  
  
  

 
 
 
 
 
 

             (12)

 

After taking partial derivative F and V at the disease free 
equilibrium, we have: 

(1 )
0 0 0

0 0 0

0 0 0 0

0 0 0 0

F

 











 
 
 
 
 
 
 
 
 

                    (13) 

1

2

3

4

0 0 0

0 0

0 0

0

K

K
V

K

K





 






 

 
 
 
 
 
 

        (14) 

Thus, 

1

0

1 3

( )K
R

K K

   



 
            (15) 

D. Local Stability of the Disease Free Equilibrium 

Theorem 1: The disease free equilibrium is locally 

asymptotically stable if 1
o

R   and unstable if 1
o

R   

Proof: The Jacobian matrix  o
J E   of the model equation (7) 

evaluated at disease free equilibrium is given by; 

 

 
1

2

3

4

0 0

1
0 0 0

0 0 0

0 0 0

0 0 0

o

K

J E
K

K

K


 



 
























 
 
 
 
 
 
 
 
 
 
 
 

 

The eigenvalues of the Jacobian matrix are 

4 2
, ,s K K     and the remaining sub-matrix is given 

by  1 o
J E  which is; 

 

 
1

1

3

1

o

K

J E

K

 















 
 
 
 
 
 
 
 

                   (16) 

The characteristics polynomial of the above is; 

2

2 1 0
0A A A              (17) 

Where; 2A   
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1 1 3
A K K    

 

 0 1 3
1

o
A R K K 

  

According to Routh Hurwitz criterion, the roots of the 

polynomial (17) will be negative if the coefficients iA (for 

i=0, 1, 2) are all positive and that the Hurwitz matrices H are 
all greater than zero. 

It can be seen clearly from the above that 

2 0A  ,
1 0A  and that 

0 0A   if 
0 1R  , Also, the Hurwitz 

matrices are as follow; 

1 1
H A  

1

2

0
0

A
H

A


  

From the above, the Hurwitz matrices for the polynomial 
are all positive, and then all the eigenvalues of the Jacobian 

matrix  O
J E  are real and negative when 1

o
R  , therefore 

the disease free equilibrium is locally asymptotically stable. 

E. Global Stability of the Disease Free Equilibrium 

Theorem 2: The disease free-equilibrium of the system (7) is 

globally asymptotically stable whenever 
0

1R  and unstable 

if
0

1R  . 

Proof: It follows that RIQENS  *  at steady state. 

The proof is based on using the comparison theorem [18]. The 
rate of change of the variables representing the infected 
component of the system can be written as follows. 

*

1

2

3

4

(1 ) ( )
dE

I N E Q I R K E
dt

dQ
E K Q

dt

dI
SI E K I

dt

dR
I Q K R

dt

 



 

 

      

 

  

  













        (18) 

For the model (7), the associated reproduction number is 

denoted by 0R , where 

1

0

1 3

( )K
R

K K

   



 
  

The DFE of the model (7) is Globaly Asymptotically 

Stable in D
*
 if

0
1R  . 

Using comparison method, we have, 

 

dE E E

dt

dQ
Q Q

dt
F V Fi

dI
I I

dt

dR
R Rdt

  

     
     
     
     
     
     
     
     
     
     

    

              (19) 

Then 

 

dE E

dt

dQ
Q

dt
F V

dI
I

dt

dR
Rdt

 

   
   
   
   
   
   
   
   
   
   

  

                            (20) 

Where 

(1 )
0 0 0

0 0 0

0 0 0 0

0 0 0 0

F

 











 
 
 
 
 
 
 
 
 

     
               (21)

 

1

2

3

4

0 0 0

0 0

0 0

0

K

K
V

K

K





 






 

 
 
 
 
 
 

                      (22) 

According to [17], all eigenvalues of the matrix F – V 
have negative real parts. It follows that the linearized 

differential inequality above is stable whenever 
0

1R  . 

Consequently ( 0) ( 0, 0, 0, 0)S E Q I R at t       .

Substituting 0E Q I R    in
0

( )R  

gives ( ) (0)S t S as t  . Hence, we have established that 

the disease free equilibrium is globally asymptotically stable 

whenever 
0

1.R   

F. Global Stability of Endemic-Equilibrium 

Lemma: For
0

1R  , the equation (7) is globally 

asymptotically stable if  

* * * * *
, , , ,s s e e q q i i r r     and M N and 

unstable when 
0

1R  . 
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Proof: Using the constructed lyapunov function, the global 
stability of the endemic equilibrium is proved by defining the 
lyapunov function as follows: 

* * * *
, , , ,V s e q i r


 =

*

* *
log

s
s s s

s
 

 
 
 

 

+

*

* *
log

e
e e e

e
 

 
 
 

+

*

* *
log

q
q q q

q
 

 
 
 

+ 

*

* *
log

i
i i i

i
 

 
 
 

+

*

* *
log

r
r r r

r
 

 
 
 

           (23) 

By direct calculating, the derivative of V along the 
solution of equation (23), we have; 

dV

dt
=

*
s s ds

s dt

 
 
 

+

*
e e de

e dt

 
 
 

 

+

*
q q dq

q dt

 
 
 

+

*
i i di

i dt

 
 
 

+

*
r r dr

r dt

 
 
 

         (24) 

dV

dt
=  

*
s s

si s r
s

   


  
 
 
 

+ 

 
*

(1 ) ( )
e e

si e
e

    


   
 
 
 

+ 

 
* *

( )
q q i i

e q
q i

  
 

  
   
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Substituting 
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into equation (25) Collecting the like terms, we have: 
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Open the brackets of (26) 
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Re-arranging the positive and negative terms 
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Hence, if M N , then we obtain 0
dV

dt
 . Noting that 
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therefore, the largest compact invariant set:  
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where 
*

E is the endemic equilibrium. Hence, by La Salle’s 

principle, it implies that 
*

E  is globally asymptotically stable 
in  if .M N  

 

IV. NUMERICAL SIMULATION 

Numerical Simulation of the model was performed by the 
help of MAPLE 17 software using Runge-kutta method of 
order four (4). The set of parameters used are given in table 3.

 
 

TABLE III.  PARAMETERS AND VALUES 

Parameters Values Source 

π 500 Assumed 

β 0.2 Assumed 

ω 0.2 Assumed 

κ 0.002 Assumed 

μ 0.5 Assumed 

δ 0.9 Assumed 

ρ 0.01 Assumed 

γ 0.2 Assumed 

υ 0.2 Assumed 

σ 0.2 Assumed 

 

 

V. DISCUSSION OF RESULTS AND CONCLUSION 

A Five (5) Compartmental model was  formulated to have 
insight into the effect of Quarantine on the exposed 
individuals and basic reproduction number in the dynamical 
spread of Diphtheria. The positivity of solution shows that the 
model is mathematically and epidemiologically well posed. 

Basic reproduction number 
0

R  which is the average number 

of new secondary infection generated by a single infected 
person during his/her infectious period determines whether 

diphtheria dies out whenever (i.e when 1R0  ) or spreads (i.e 

when 1R0  ). The global stability of endemic equilibrium 

was analyzed using Lyapunov function. 

Numerical simulation of the model was carried out by 
MAPLE 17 software using the Runge-kutta method of order 
four. Figures 1 shows the effect of quarantine rate on the 
exposed individuals, it shows that as quarantine rate of 
exposed individual increases, the exposed individual 
decreases. At the initial stage, the population of the exposed 

class increases, with no changes when different quarantine 
rates are being applied but later decreases, i.e the exposed 
class reaches its peak over a short period before the positive 
effect of the quarantine manifested. This is because quarantine 
involves monitoring and treatment of selected 
infectious/infected individuals, in which they will move out of 
the class when they are cleared off of the disease. Figure 2 
shows that as quarantine rate increases, the quarantine class 
increases. Figures 3 shows the effect of quarantine rate on the 
basic reproduction number. The result shows that as the 
quarantine rate increases, the basic reproduction number 
decreases, which means that increase in quarantine rate will 
reduce the spread of diphtheria disease in the community. 
Figures 4-7 show the effect of quarantine rate on the basic 
reproduction number. The result shows that as the quarantine 
rate increases, the basic reproduction number decreases which 
make it easier to reduce the spread of diphtheria disease in the 
community. Conclusively, the quarantine of exposed 
individual should be given priority by policy health makers in 
order to have efficient control of Diphtheria disease in the 
community. 
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Figure 2.  Effect of quarantine rate on the exposed individuals 

 

 

Figure 3.  Rate at which the quarantine class increases 

 

 

Figure 4.  Effect of quarantine rate on the basic reproduction number 
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Figure 5.  Effect of quarantine rate on the basic reproduction number 

 

 

Figure 6.  Effect of quarantine rate on the basic reproduction number 

 

 

Figure 7.  Effect of quarantine rate on the basic reproduction number 
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