

Investigation of Thermal Degradation Kinetics of Pyrazabole Centered Two-Armed Poly(methyl methacrylate)

Adnan KURT^{1,*}, Handan AYAZ¹, Ahmet GÜLTEK²

¹Adıyaman University, Faculty of Arts and Sciences, Department of Chemistry, 02040 Adıyaman, Türkiye, akurt@adiyaman.edu.tr, handanbrt@gmail.com

²İnönü University, Faculty of Arts and Sciences, Department of Chemistry, 44280 Malatya, Türkiye, ahmet.gultek@inonu.edu.tr

Abstract

A series of two armed polymers of methyl methacrylate (PMMA) was synthesized by atom transfer radical polymerization (ATRP) method using 2,6dibromopyrazabole as initiator and CuBr/2,2'-bipyridine as catalyst system at 100 °C ended different times. Average number molecular weights and molecular weight distributions of polymer series were recorded with GPC technique and thus, polymerization kinetic was determined. Thermal behavior of two-armed PMMA polymerized at 240 minutes was investigated detailed by TGA method at the heating rates of 5, 10, 15, 20 and 25 °C/min. From TGA results, a linear correlation was determined between the heating rate and the thermal stability of the polymer. Decomposition activation energies of polymer were found to be 120,98 kJ/mol and 112,53 kJ/mol by the Flynn-Wall-Ozawa and Kissinger methods, respectively. Some kinetic methods such as Coats-Redfern, Tang and Madhusudanan were used to investigate the thermal degradation mechanisms of polymer. In the light of obtained kinetic data, it was observed that the thermal decomposition mechanism of the pyrazabole centered two-armed PMMA was followed by D₂ type deceleration mechanism at 5 °C/min optimum heating rate.

Keywords: Pyrazabole, Atom Transfer Radical Polymerization (ATRP), Thermogravimetric Analysis, Activation Energy.

Pirazabol Merkezli İki Kollu Poli(metil metakrilat)'ın Termal Bozunma Kinetiğinin Araştırılması

Özet

Atom transfer radikal polimerizasyon (ATRP) metoduyla 2,6-dibromo pirazabol başlatıcısı varlığında CuBr/2,2'-bipiridin katalizör sistemi ile katalizlenen metil metakrilatın 100 °C'de farklı sürelerde sonlandırılan bir seri iki kollu polimeri (PMMA) sentezlendi. Polimerlerin ortalama molekül ağırlıkları ve molekül ağırlık dağılımları GPC tekniği ile belirlenerek polimerizasyon kinetiği araştırıldı. 240 dakikalık sürede polimerleştirilen iki kollu PMMA'ın termal davranışı detaylıca test edildi. TGA metodu kullanılarak 5, 10, 15, 20 ve 25 °C/dak ısıtma hızlarında termal bozunma kinetiği araştırıldı. TGA sonuçlarından, ısıtma hızı ile polimerin termal kararlılığı arasında doğrusal bir ilişki tespit edildi. Polimerin termal bozunma aktivasyon enerjisi Flynn-Wall-Ozawa ve Kissinger metotlarından sırasıyla 120,98 kJ/mol ve 112,53 kJ/mol olarak hesaplandı. Polimerin termal bozunma mekanizmasını belirlemek amacıyla Coats-Redfern, Tang ve Madhusudanan gibi kinetik metotlar kullanıldı. Elde edilen kinetik veriler ışığında pirazabol merkezli iki kollu PMMA'ın termal bozunma mekanizmasının D₂ tipi yavaşlama mekanizması üzerinden 5 °C/dak optimum ısıtma hızında ilerlediği gözlemlendi.

Anahtar Kelimeler: Pirazabol, Atom Transfer Radikal Polimerizasyonu (ATRP), Termogravimetrik Analiz, Aktivasyon Enerjisi.

1. Giriş

Pirazaboller, bor içerikli heterosiklik bileşik sınıfında yer alan önemli bileşik gruplardan biridir. İlk sentezlerinden bu yana [1] çok sayıda pirazabol türevi sentezlenmiş ve karakterize edilmiştir [2]. Pirazabollerin oldukça kararlı yapılarda olmalarından dolayı geleneksel organik reaksiyonlar kullanılarak farklı fonksiyonel gruplu türevleri kolaylıkla sentezlenebilmektedir [2]. Bor içerikli bu yapılar, pösedokonjuge sistemler oluşturduklarından [3] elektronik ve optik özellikleri dikkat çekmiştir [4,5]. Özellikle bor atomunun yüksek elektron ilgisinden dolayı, yüksek molar absorpsiyon katsayıları, iki-foton absorpsiyon kesitleri, yüksek emisyonlu kuantum ürünleri ve çevresel ortama duyarlılık gibi özellikleri mevcuttur [6]. Bu eşsiz özelliklerinden ötürü yeni tip optik ve elektronik materyallerinin hazırlanmasında kullanılmıştır [7]. Bu özelliklere ek olarak, son yıllarda diskotik sıvı kristalleri için temel yapı elemanı olarak [8] veya supramolekül uygulamalarında [9], π -konjuge hibrit polimerlerinin [7] ve lüminesans materyallerinin hazırlanmasında [10] aktif kullanımı görülmektedir. Pirazabollerin farklı uygulamalar için geniş kapsamlı türevlerin sentezinin yanı sıra, organoboron polimerlerin yeni bir üyesi olarak, polipirazabollerin sentezi ve uygulamaları son yıllarda literatürde ayrıca rapor edilmiştir [2,7]. Bu genellikle molekül verimlerde polimerler yüksek ağırlıklı ve yüksek sentezlenebilmektedir. Ayrıca, polipirazaboller hava ve neme karşı oldukça dirençlidir ve floresans emisyon özellik gösterebilmektedir. Bu emisyon özellikleri sayesinde polipirazabol kullanımına dayalı yeni optik materyaller hazırlanabilmektedir [2].

Öte yandan, bor atomunun yüksek elektron ilgisi pirazabol merkeze bağlı klor ya da brom gibi bir atomun, optimum şartların sağlanması halinde, kolayca koparılabilmesine olanak tanımasıdır. Bu özelliği sayesinde atom transfer radikal polimerizasyonu (ATRP) gibi kontrollü polimerizasyon yöntemlerinde başlatıcı olarak kullanılabilmektedir. Zira multibileşimli bir sistem olarak ATRP, bir monomer, transfer edilebilir halojene (pösedo halojen) sahip bir başlatıcı ve bir geçiş metalinin uygun bir ligand ile oluşturmuş olduğu katalizör sistemden ibarettir [11]. ATRP'de radikaller veya aktif türler, geçiş metal kompleksi (Mtn-Y/Ligand) tarafından katalizlenmiş bir tersinir redoks prosesi ile elde edilebilir. Bu redoks sistem inaktif bir tür olan alkil halojenürdeki (R-X) pösedo halojen atomunun (X), homolotik olarak koparılması ve geçiş metalinin bir elektronluk oksidasyonu ile oluşmaktadır [12]. İyi tanımlı bir ATRP sisteminin geliştirilmesinde, özellikle molekül ağırlık dağılımı düşük polimerlerin elde edilmesinde, geçiş metal kompleksi ile başlatıcı arasında halojen atomunun etkin transferi oldukça önem arz etmektedir. α-karbonunda aril karbonil ya da allil gruplar gibi aktif sübstitüentleri taşıyan alkil halojenürler, sülfonil halojenürler, tiyosiyanat ve tiyokarbamatlar gibi pösedo halojenürler ATRP'de başlatıcı olarak kullanılabilmektedir [13-16]. Kullanılan başlatıcıda halojenür grubunun klor yada brom olması durumunda aktivasyon-deaktivasyon hız basamakları arasındaki atom transferinin etkinliği optimum düzeye çıkmaktadır [17]. ATRP'de başlatıcı sistemlerinin geliştirilmesinde dikkat çeken temel husus, halojenür grubunun homolitik olarak koparılabilme ve katalizör sistemine transfer edilebilme kolaylığıdır. Pirazabol merkezli bileşiklerde mevcut halojenürlerin koparılabilme kolaylığı, pirazabollerin yukarıda değinilen farklı özelliklerinin yanı sıra ATRP'de başlatıcı olarak kullanılabilme özeliğini de katmıştır. Bu açıdan mevcut çalışma, 1.2-dibromo pirazabol bileşiğinin atom transfer radikal polimerizasyon sisteminde başlatıcı olarak kullanılabilme etkinliğini araştırmaktadır. Ayrıca sentezlenen pirazabol merkezli iki kollu poli(metil metakrilat)'ın farklı kinetik metotlar kullanılarak aktivasyon enerjisi ve termal bozunma mekanizmaları gibi kinetiksel analiz çalışmamızda detaylıca rapor edilmiştir.

2. Materyal ve Metot

2.1. Kullanılan Kimyasal Maddeler

1,2-dibromopirazabol, 2,2'-bipiridin, CuBr, magnezyum sülfat, sodyum hidroksit, tetrahidrofuran (THF) ve kloroform Sigma-Aldrich firmasından hazır temin edildi. Metil metakrilat (Sigma-Aldrich) polimerizasyon öncesinde seyreltik NaOH çözeltisi ile ekstrakte edilerek saflaştırıldı. Teknik olarak temin edilen metanol polimerlerin çöktürülmesinde kullanıldı.

2.2. Kullanılan Cihazlar

Polimerlerin FTIR spektrumları bir Perkin Elmer Spektrum One FT-IR spektrometresi ile alındı. Bruker 300 UltraShield ¹H-NMR spektrometresi kullanılarak ¹H-NMR spektrumlar kaydedildi. Polimerlerin ortalama molekül ağırlıklarının ve molekül ağırlık dağılımlarının belirlenmesinde Agilent 1100 Series, Gel Permeation Chromatography (GPC) cihazı kullanıldı. Polimerlerin termogravimetrik analiz ölçümleri Shimadzu TGA- 50 model cihaz ile azot gazı atmosferinde (25 mL/dak) oda sıcaklığından 500 °C'ye kadar 5, 10, 15, 20 ve 25 °C/dak ısıtma hızlarında gerçekleştirildi.

2.3. ATRP Metodu ile Pirazabol Merkezli İki Kollu PMMA'nın Sentezi

ATRP yöntemi ile pirazabol merkezli iki kollu PMMA'nın hazırlanmasında gerekli reaktiflerin, 1,2-dibromopirazabol : CuBr : bipiridin : MMA, mol oranları sırasıyla 1:8:16:800 olarak alındı. Polimerizasyon kinetiğinin değerlendirilmesinde aynı oranlarda ATRP bileşimini içeren bir seri polimer örneği hazırlandı. Bu amaçla aşağıdaki genel proses takip edildi. İlk olarak, argon gazından geçirilen bir polimerizasyon tüpüne 1,2-dibromopirazabol (0,032 g) konulup birkaç damla THF içinde çözülerek argon gazından geçirildi. Üzerine katalizör sistem olarak CuBr (0,0056 g) ve bipiridin (0,043 g) sırayla konulduktan sonra tekrar argon gazından geçirilip kompleks oluşturuldu. Oluşturulan kompleks üzerine gerekli miktardaki metil metakrilat monomeri (0,801 g) ilave edildikten sonra karışım argon gazıyla 10 dakika daha etkileştirildi. Tüpün ağzı kapatılıp önceden 100 °C sıcaklığa ayarlanmış yağ banyosuna daldırılarak iki kollu homopolimerizasyon başlatıldı. 30, 60, 120, 180 ve 240 dakikalık farklı sürelerde polimer örnekleri yağ banyosundan çıkarılıp metanol içinde çöktürüldü, süzüldü ve vakum altında 45 °C'de sabit tartıma gelinceye kadar kurutuldu. Mevcut sentezin şematik gösterimi Şekil 1'de özetlendi.

Şekil 1. ATRP metodu kullanılarak pirazabol merkezli iki kollu PMMA'nın sentezi

3. Sonuçlar ve Tartışma

Hazırlanan pirazabol merkezli iki kollu PMMA'nın FTIR spektrumunda (Şekil 2a), 2850–3050 cm⁻¹ aromatik (pirazabol merkez) ve alifatik C-H gerilmeleri, 1727 cm⁻¹ MMA birimlerindeki metakrilat ester C=O, 1637 cm⁻¹ C=N gerilme titreşimi (pirazabol merkez), 1590 cm⁻¹ aromatik C=C gerilme titreşimi, 1150 cm⁻¹ C-O asimetrik gerilmesi için en karakteristik bandlardır. Polimerin ¹H-NMR spektrumu Şekil 2b'de gösterildi. Bu spektumda 7.27 ppm CDCl₃, 3.60 ppm MMA birimlerindeki estere komşu -CH₃ protonları, 3.1 ppm polimer zincir ucundaki -CH₂Br protonları, 1.9 ppm polimer ana zincirindeki –CH₂ protonları, 0.9 ppm polimer ana zincirindeki –CH₃ protonları için atfedilmiştir.

Şekil 2. Pirazabol merkezli iki kollu PMMA'nın FTIR (a) ve ¹H-NMR (b) spektrumları

Polimerizasyon kinetiğinin değerlendirilmesi amacıyla farklı sürelerde sonlandırılan bir seri PMMA'nın ortalama molekül ağırlıkları ve molekül ağırlık dağılımlarının tayini jel geçirgenlik kromotografisi (GPC) ile yapıldı. GPC sinyalleri Şekil 3'te, ilgili sonuçlar ise Tablo 1'de gösterildi. Polimerizasyon süresi 30 dakikadan 240 dakikaya arttırıldığında sayıca ortalama molekül ağırlığı yaklaşık olarak 12700'den 20000'e çıkmaktadır.

Şekil 3. Farklı sürelerde sonlandırılan pirazabol merkezli PMMA'nın GPC sinyalleri

Sayıca ortalama molekül ağırlığında zamanla bir artış meydana gelirken, tersi durumda, polimerizasyon süresi 30 dakikadan 240 dakikaya yükseldiğinde polidispersitede (PDI) 2,15'den 1,39'a bir azalma gözlendi. Şekil 4, sayıca ortalama molekül ağırlığı ve polidispersitelerin zamana karşı değişimlerini göstermektedir. Farklı sürelerde sonlandırılan polimerlerin sayıca molekül ağırlıklarının zamanla artışı, başlatıcı birimlerindeki aktif halojenlerin polimerizasyon esnasında transfer edilerek aktivasyon ve deaktivasyon yönündeki reaksiyon basamakları arasında bir dinamik dengenin var olduğunu göstermektedir. Bu sonuca göre polimerizasyon, serbest radikal polimerizasyon yerine yaşayan karakterli bir polimerizasyonu tercih etmektedir [18]. Ayrıca, polidispersitenin zamanla azalma göstermesi, pirazabol merkezli MMA'nın iki kollu polimerizasyon kinetiğinin kontrollü bir polimerizasyon kinetiğine uyduğu sonucunu çıkarmaktadır [19].

Tablo 1. Farklı sürelerde sonlandırılan pirazabol merkezli PMMA'nın GPC verileri

Süre	Mn (g/mol)	PDI
30	12700	2,15
60	16700	1,74
120	18800	1,62
180	19600	1,44
240	20000	1,39

Şekil 4. Sayıca ortalama molekül ağırlığı (Mn) ve polidispersitelerin zamana karşı değişimi

Şekil 5. Pirazabol merkezli PMMA'nın farklı ısıtma hızlarında kaydedilen TGA termogramları

240 dakikada sonlandırılan pirazabol merkezli PMMA'nın termal davranışları termogravimetrik analiz (TGA) yöntemi ile belirlendi. Belirli miktarlarda alınan polimer örnekleri oda sıcaklığından 500 °C'ye kadar farklı ısıtma hızlarında (5, 10, 15, 20 ve 25 °C/dak) azot atmosferinde ısıtılarak analiz edildi. Bu ısıtma hızlarında elde edilen TGA termogramları Şekil 5'te gösterildi. İlgili termogramlardan, bozunmanın yaklaşık 250 °C'ye kadar bir kademe ve 250 °C'den sonra da bir kademe olmak üzere iki kademede gerçekleştiği görüldü. Polimerin farklı ısıtma hızlarındaki başlangıç bozunma sıcaklıkları, bitiş bozunma sıcaklıkları, %50 bozunmanın olduğu sıcaklık, 300 °C ve 400 °C'deki bozunma yüzdeleri belirlenerek sonuçlar Tablo 2'de özet halinde verildi. Isıtma hızı arttıkça TGA eğrilerinde ve pik sıcaklıklarında bir artış gerçekleşmektedir. Bu durum pek çok polimerin termal bozunmasında gözlenen bir davranıştır [16,20-22]. Termogravimetrik verilerden fraksiyonel bozunma değerleri (α) de ayrıca tespit edildi. Sıcaklığın kontrollü artışı ile bu değerlerde doğrusal bir korelasyonun olduğu gözlendi.

Isıtma Hızı	$T_{\text{başlangıç}}$	T_{bitis}	T _{%50}	300 °C'de	400 °C'de	500 °C'de
				%Ağırlık	%Ağırlık	
(°C)	(°C)	(°C)	(°C)	Kaybı	Kaybı	%Artik
5	246	417	351,5	24,76	93,33	4,78
10	256	430	355,5	23,81	90	5,26
15	258	439	372,4	23,34	76,2	7,21
20	265	458	375,5	22,88	72,38	5,94
25	267	470	380	22,38	69,52	7,27

Tablo 2. Pirazabol merkezli iki kollu PMMA polimerinin termal karakteristikleri

Şekil 6. Flynn Wall Ozawa metoduna göre farklı bozunma yüzdeliklerindeki $log\beta$ - 1000/T eğrileri

Termogravimetrik analiz metoduyla 5, 10, 15, 20 ve 25 °C/dak ısıtma hızlarındaki bozunma eğrilerinden yararlanılarak pirazabol merkezli iki kollu poli(metil metakrilat)'ın termal bozunma aktivasyon enerjileri Flynn-Wall-Ozawa [23,24] ve Kissinger [25] metotlarına göre tayin edildi. Bu iki metot, reaksiyon mertebesinin veya bozunma mekanizmasının bilinmesine gerek duyulmaksızın aktivasyon enerjisinin tespit edilmesinde kullanılan integral metotlardır [26].

Tablo 3. Flynn-Wall-Ozawa metodu kullanılarak farklı bo	ozunmalarda	hesaplanar
aktivasyon enerjileri		

% Bozunma	E (kJ/mol)	R
60	128,93	0,9110
65	127,27	0,9114
70	123,60	0,9090
75	122,03	0,8807
80	117,94	0,9050
85	115,61	0,9127
90	111,48	0,9535
Ortalama	120,98	

Flynn-Wall-Ozawa metodu için %60, %65, %70, %75, %80, %85 ve %90 dönüşüm değerlerinde ölçümler alındı. Farklı dönüşümlerde tespit edilen 1000/T sıcaklık değerlerine karşı logβ değerleri Şekil 6'da grafiğe geçirildi. Elde edilen bir seri doğrunun eğiminden, her bir dönüşüm yüzdesine karşılık gelen aktivasyon enerji değeri ayrı ayrı hesaplandı ve Tablo 3'te verildi. Bu değerler arasında polimer için ortalama aktivasyon enerji değeri 120,98 kJ/mol olarak hesaplandı. %75'lik dönüşüm için hesaplanan aktivasyon enerji değeri (122,03 kJ/mol), ortalama aktivasyon enerji değerine en yakın değerdedir.

Reaksiyon mertebesinden bağımsız diğer bir metot olan Kissinger metodu için farklı ısıtma hızlarında elde edilen $\ln(\beta/T^2_{max}) - 1000/T_{max}$ eğrisi ise Şekil 7'de gösterildi. Bu metoda göre aktivasyon enerji değerinin hesaplanabilmesi için gerek duyulan maksimum bozunma hızına karşılık gelen sıcaklıklar (T_{max}) 5, 10, 15, 20 ve 25 °C/dak ısıtma hızlarında sırasıyla 380 °C, 384.55 °C, 405.45°C, 416.64 °C ve 422.73 °C olarak ölçüldü. Kissinger metoduna göre Şekil 7'de gösterilen doğrunun eğiminden aktivasyon enerjisi 112,53 kJ/mol olarak hesaplandı. Bu iki metottan elde edilen aktivasyon enerjileri karşılaştırıldığında birbirleri ile oldukça uyum halinde oldukları görüldü. Ölçülen aktivasyon enerjileri literatürde rapor edilen değerlere yakınlık teşkil etmektedir [27].

Şekil 7. Kissinger metoduna göre $ln(\beta/T_{max}^2) 1000/T_{max}$ eğrisi

Mekanizma	Coats-Redfern Metodu		Tang Metodu		Madhusudanan Metodu	
Wekamzina	E (kJ/mol)	R	E (kJ/mol)	R	E (kJ/mol)	R
A_2	40,18	0,9575	52,35	0,9743	40,57	0,9579
A ₃	23,16	0,9439	31,44	0,9687	23,57	0,9458
A_4	14,66	0,9236	20,99	0,9609	15,07	0,9274
R ₁	35,11	0,9934	38,74	0,9889	35,50	0,9936
R ₂	58,74	0,9820	70,00	0,9861	59,12	0,9822
R ₃	68,53	0,9769	83,39	0,9838	68,89	0,9772
D_1	81,07	0,9950	87,85	0,9913	81,43	0,9950
D ₂	107,94	0,9901	122,47	0,9902	108,27	0,9902
D ₃	147,91	0,9800	177,16	0,9856	148,21	0,9801
D_4	120,91	0,9868	140,09	0,9888	121,23	0,9869
F_1	91,21	0,9661	115,07	0,9785	91,56	0,9664
F ₂	137,91	0,9021	199,72	0,9484	138,22	0,9026
F ₃	286,69	0,9086	409,83	0,9508	286,87	0,9088

Tablo 4. Farklı katı hal bozunma mekanizmaları için 5 °C/dak ısıtma hızındahesaplanan aktivasyon enerjileri

Pirazabol merkezli iki kollu PMMA'nın termal bozunma mekanizmasını tespit etmek amacıyla Coats-Redfern [28], Tang [29] ve Madhusudanan [30] kinetik metotlarından hesaplanan aktivasyon enerji değerleri Flynn-Wall-Ozawa ve Kissinger metotlarından elde edilen aktivasyon enerjileri ile karşılaştırıldı. Literatürde özetlenen [26] her bir g(α) fonksiyonunun aktivasyon enerjisi, Coats-Redfern metoduna göre, ln[g(α)/T²]'e karşı 1000/T doğrusunun eğiminden, Tang metoduna göre; ln[g(α)/T^{1.89466100}]'e karşı 1000/T grafiğinden elde edilen doğrunun eğiminden, Madhusudanan metoduna göre ln[g(α)/T^{1.921503}] - 1000/T grafiğinden elde edilen doğrunun eğimden hesaplandı.

Mekanizma	Coats-Redfer	rn Metodu	Tang Metodu Madhusudana		nan Metodu	
TTO Kullizina	E (kJ/mol)	R	E (kJ/mol)	R	E (kJ/mol)	R
A ₂	33,28	0,9863	33,65	0,9692	33,68	0,9867
A ₃	18,52	0,9803	18,93	0,9569	18,94	0,9812
A_4	11,14	0,9694	11,57	0,9359	11,56	0,9716
R ₁	28,08	0,9457	23,25	0,8930	28,41	0,9473
R ₂	48,75	0,9788	45,46	0,9524	49,14	0,9791
R ₃	57,40	0,9841	55,04	0,9629	57,79	0,9843
D ₁	66,99	0,9619	56,99	0,9267	67,37	0,9624
D ₂	90,46	0,9757	81,47	0,9489	90,81	0,9759
D ₃	125,80	0,9868	120,59	0,9691	126,13	0,9869
D_4	101,90	0,9806	94,05	0,9574	102,25	0,9808
F ₁	77,55	0,9900	77,80	0,9771	77,92	0,9901
F ₂	121,45	0,9798	140,79	0,9975	121,48	0,9800
F ₃	253,90	0,9814	292,09	0,9977	254,12	0,9815

Tablo 5. Farklı katı hal bozunma mekanizmaları için 10 °C/dak ısıtma hızındahesaplanan aktivasyon enerjileri

Tablo 6. Farklı katı hal bozunma mekanizmaları için 15 °C/dak ısıtma hızındahesaplanan aktivasyon enerjileri

Mekanizma	Coats-Redfe	rn Metodu	Tang Metodu Madhusudanan Met			nan Metodu
Wexamzina	E (kJ/mol)	R	E (kJ/mol)	R	E (kJ/mol)	R
A ₂	34,28	0,9912	38,56	0,9945	34,69	0,9914
A ₃	19,08	0,9877	22,02	0,9925	19,51	0,9883
A_4	11,49	0,9815	13,87	0,9892	11,92	0,9828
R ₁	29,21	0,9845	27,33	0,9636	29,63	0,9849
R ₂	50,47	0,9954	52,06	0,9883	50,87	0,9955
R ₃	59,31	0,9956	62,69	0,9920	59,70	0,9957
D ₁	69,72	0,9893	65,46	0,9746	70,10	0,9894
D ₂	93,82	0,9947	92,77	0,9851	94,17	0,9947
D ₃	129,89	0,9963	136,21	0,9932	130,26	0,9964
D ₄	105,52	0,9960	106,75	0,9888	105,87	0,9960
F ₁	79,86	0,9934	87,92	0,9958	80,23	0,9935
F ₂	123,64	0,9856	156,68	0,9919	123,97	0,9589
F ₃	258,57	0,9619	324,18	0,9924	258,79	0,9620

Mekanizma	Coats-Redfern Metodu		Tang Metodu		Madhusudanan Metodu	
Wiekamzina	E (kJ/mol)	R	E (kJ/mol)	R	E (kJ/mol)	R
A ₂	36,31	0,9867	42,43	0,9956	36,73	0,9870
A ₃	20,40	0,9817	24,65	0,9943	20,83	0,9824
A_4	12,44	0,9732	15,75	0,9923	12,88	0,9749
R ₁	31,20	0,9966	30,60	0,9931	31,62	0,9967
R ₂	53,41	0,9978	57,26	0,9991	53,82	0,9978
R ₃	62,64	0,9957	68,7	0,9988	63,03	0,9958
D1	73,82	0,9977	72,12	0,9951	74,21	0,9977
D ₂	99,03	0,9992	101,62	0,9985	99,40	0,9992
D ₃	136,71	0,9964	148,32	0,9989	137,04	0,9964
D_4	111,25	0,9987	116,66	0,9992	111,60	0,9987
F_1	84,05	0,9898	95,79	0,9965	84,43	0,9899
F ₂	129,13	0,9433	168,79	0,9761	129,47	0,9437
F ₃	269,69	0,9476	348,51	0,9775	269,91	0,9478

Tablo 7. Farklı katı hal bozunma mekanizmaları için 20 °C/dak ısıtma hızında hesaplananaktivasyon enerjileri

Bütün bu metotlara göre 5, 10, 15, 20 ve 25 °C/dak ısıtma hızlarında, her bir $g(\alpha)$ fonksiyonu için hesaplanan aktivasyon enerjileri ve lineer regresyon (R) değerleri sırasıyla Tablo 4-8 içinde karşılaştırılmalı olarak verildi. Tüm bu tablolardaki veriler analiz edildiğinde, mevcut metotlar için D_n difüzyon tip yavaşlama mekanizmaları için hesaplanan aktivasyon enerjileri, reaksiyon mekanizmasından bağımsız olan Flynn-Wall-Ozawa (E = 120,98 kJ/mol) ve Kissinger (E = 112,53 kJ/mol) metotlarına göre hesaplanan aktivasyon enerjilerine en yakın değerlere karşılık gelmektedir.

D_n difüzyon tip yavaşlama mekanizmaları arasında 5 °C/dak ısıtma hızında, D₂ çift boyutlu difüzyon tipi yavaşlama mekanizması dikkat çekicidir. 5 °C/dak ısıtma hızında bu mekanizma için belirlenen aktivasyon enerjileri ve lineer regresyon değerleri Coats-Redfern metodu için E = 107,94 kJ/mol (R = 0,9901), Tang metodu için E = 122,47 kJ/mol (R = 0,9902) ve Madhusudanan metodu için E = 108,27 kJ/mol (R = 0,9902) şeklindedir. Tüm kinetik metotlar ve ısıtma hızları arasında Flynn-Wall-Ozawa (E = 120,98 kJ/mol) ve Kissinger (E = 112,53 kJ/mol) metotları ile en iyi uyum, 5 °C/dak ısıtma hızında Tang metoduna göre (E = 122,47 kJ/mol, R = 0,9902) elde edildi. Bu sonuçlardan, pirazabol merkezli iki kollu poli(metil metakrilat)'ın termal bozunma mekanizması D₂ çift boyutlu difüzyon tipi yavaşlama mekanizması üzerinden 5 °C/dak optimum ısıtma hızında ilerlemektedir.

Mekanizma	Coats-Redfer	rn Metodu	Tang Metodu		Madhusudanan Metodu	
	E (kJ/mol)	R	E (kJ/mol)	R	E (kJ/mol)	R
A ₂	27,01	0,9906	29,40	0,9870	27,44	0,9909
A ₃	14,14	0,9850	15,89	0,9799	14,58	0,9859
A4	7,71	0,9723	9,14	0,9656	8,15	0,9752
R ₁	22,59	0,9662	20,02	0,9242	23,02	0,9675
R ₂	65,58	0,9900	40,36	0,9740	41,04	0,9902
R ₃	48,15	0,9924	49,12	0,9816	48,54	0,9926
D ₁	56,79	0,9789	51,16	0,9528	57,17	0,9792
D ₂	77,21	0,9883	73,59	0,9705	77,57	0,9884
D ₃	107,89	0,9940	109,35	0,9853	108,21	0,9941
D_4	87,16	0,9912	85,10	0,9769	87,49	0,9913
F_1	65,61	0,9935	69,91	0,9910	65,98	0,9936
F ₂	103,16	0,9675	127,00	0,9990	103,48	0,9677
F ₃	217,93	0,9705	265,12	0,9991	218,10	0,9707

Tablo 8. Farklı katı hal bozunma mekanizmaları için 25 °C/dak ısıtma hızındahesaplanan aktivasyon enerjileri

Sonuçlar

ATRP yöntemi ile farklı sürelerde sonlandırılan bir seri pirazabol merkezli iki kollu poli(metil metakrilat)'ın ortalama molekül ağırlıkları ve molekül ağırlık dağılımları GPC tekniği ile belirlendi. Polimerizasyon süresi 30 dakikadan 240 dakikaya değiştiğinde sayıca ortalama molekül ağırlığı yaklaşık olarak 12700'den 20000'e bir artış gösterirken polidispersitede 2,15'den 1,39'a bir azalma gözlendi. 240 dakikalık sürede polimerleştirilen iki kollu PMMA'nın termal davranışı TGA metodu ile analiz edildi. TGA sonuçlarından, ısıtma hızı ile polimerin termal kararlılığı arasında doğrusal bir ilişki tespit edildi. Polimerin termal bozunma aktivasyon enerjisi Flynn-

Wall-Ozawa ve Kissinger metotlarından sırasıyla 120,98 kJ/mol ve 112,53 kJ/mol olarak hesaplandı. Polimerin termal bozunma mekanizmasını belirlemek amacıyla Coats-Redfern, Tang ve Madhusudanan gibi kinetik metotlar kullanıldı. Elde edilen kinetik veriler ışığında pirazabol merkezli iki kollu PMMA'nın termal bozunma mekanizmasının D₂ tipi yavaşlama mekanizması üzerinden 5 °C/dak optimum ısıtma hızında ilerlediği gözlemlendi.

Kaynaklar

[1] Trofimenko, S., *Boron-pyrazzole Chemistry*. *I. Prrazaboles*, Journal of the American Chemical Society, **89**, 3165-3170, 1967.

[2] Matsumoto, F., Nagata, Y., Chujo, Y., *Synthesis of Novel Poly(Pyrazabole)s with Electron-Withdrawing Structure in Their Main Chain*, Polymer Bulletin, **53**, 155-160, 2005.

[3] Liu, X. T., Zou, L. Y., Ren, A. M., Guo, J. F., Sun, Y., Huang, S., Feng, J. K., *Theoretical Investigation of One- and Two-Photon Spectra of Pyrazabole Chromophores*, Theor. Chem. Acc., **130**, 37-50, 2011.

[4] Hayek, A., Nicoud J. F., Bolze, F., Bourgogne, C., Baldeck, P. L., *Boron-Containing Two-Photon-Absorbing Chromophores: Electronic Interaction through the Cyclodiborazane Core*, Angew. Chem. Int. Ed., **45**, 6466-6469, 2006.

[5] Hayek, A., Bolze, F., Bourgogne, C., Baldeck, P. L., Didier, P., Arntz, Y., Me'ly, Y., Nicoud, J. F., *Boron Containing Two-Photon Absorbing Chromophores. 2. Fine Tuning of the One- and Two-Photon Photophysical Properties of Pyrazabole Based Fluorescent Bioprobes*, Inorg.Chem., **48**, 9112-9119, 2009.

[6] Chow, Y. L., Johansson, C. I., Zhang, Y. H., Gautron, R., Yang, L., Rassat, A., Yang, S. Z., Spectroscopic and *Electrochemical Properties of 1,3-Diketonatoboron Derivatives*, J. Phys. Org. Chem., 9, 7-16, 1996.

[7] Matsumoto, F., Chujo, Y., Synthesis of New Fluorescent Organoboron Polymers Based on Pyrazaboles, Macromolecules, **36**, 5516-5519, 2003.

[8] Barberá, J., Giménez, R., Serrano, J. L. Pyrazaboles: New Room-Temperature Columnar Liquid Crystals, Adv. Mat., 6, 470-472, 1994.

[9] Jäkle, F., Priermeier, T., Wagner, M., Synthesis, Structure, and Dynamic Behavior of ansa-Ferrocenes with Pyrazabole Bridges, Organometallics, **15**, 2033-2040, 1996.

[10] Matsumi, N., Chujo, Y., π -Conjugated Organoboron Polymers via the Vacant p-Orbital of the Boron Atom, Polym. J., 40, 77-89, 2008.

 [11] Wang, J. S., Matyjaszewski, K., Controlled Living Radical Polymerization -Atom-Transfer Radical Polymerization in the Presence of Transition-Metal Complexes,
 J. Am. Chem. Soc., 117, 5614-5615, 1995.

[12] Wang, J. S., Matyjaszewski, K., Controlled Living Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu (I)/Cu (II) Redox Process, Macromolecules, **28**, 7901-7910, 1995.

[13] Davis, K., O'Malley, J., Palk, H. J., Matyjaszewski, K., Effect of The Counteranion in Atom Transfer Radical Polymerization using Alkyl (Pseudo)Halide Initiators, Polym. Prepr. Am.Chem. Soc. Div. Polym. Chem., **38(1)**, 687-688, 1997.

[14] Coessens, V., Pintauer, T., Matyjaszewski, K., *Functional Polymers by Atom Transfer Radical Polymerization*, Progress in Polymer Science, 26(3), 337-377,
 2001.

[15] Singha, N. K., Klumperman, B., Atom Transfer Radical Polymerization Of Methyl Methacrylate (MMA) using CuSCN as Catalyst, Macromol. Rapid Commun.,
21, 1116-1120, 2000.

[16] Kurt, A., Thermal Decomposition Kinetics of Poly(nButMA-b-St) Diblock
Copolymer Snthesized by ATRP, Journal of Applied Polymer Science, 114(1), 624-629,
2009.

[17] Matyjaszewski, K., Xia, J., *Atom Transfer Radical Polymerization*, Chem. Rev., **101(9)**, 2921–2990, 2001.

[18] Kato, M., Kamigaito, M., Sawamoto, M., Higashimura, T., "Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuVbpyLCl, Macromolecules, **28**, 1721-1723, 1995.

[19] Matyjaszewski, K., Wang, J. L., Grimaud, T., Shipp, D. A., Controlled/'Living' Atom Transfer Radical Polymerization of Methyl Methacrylate using Various Initiation Systems, Macromolecules, **31**, 1527-1534, 1998.

[20] Kurt, A., Kaya, E., Synthesis, Characterization, and Thermal Degradation Kinetics of the Copolymer Poly(4-Methoxybenzyl Methacrylate-co-Isobornyl Methacrylate), J. Appl. Polym. Sci., **115**, 2359-2367, 2010.

[21] Meng, X. L., Huang, Y. D., Yu, H., Lv, Z. S., *Thermal Degradation Kinetics of Polyimide Containing 2, 6-Benzobisoxazole Units*, Polym. Degrad. Stabil., **92**, 962-967, 2007.

[22] Li, L., Guan, C., Zhang, A., Chen, D., Qing, Z., *Thermal Stabilities And The Thermal Degradation Kinetics of Polyimides*, Polym. Degrad. Stabil., **84**, 369-373, 2004.

[23] Flynn, J. H., Wall, L. A., *A Quick, Direct Method for The Determination of Activation Energy from Thermogravimetric Data*, Journal of Polymer Science Part B: Polymer Letters, **4**, 323-328, 1966.

[24] Ozawa, T., Applicability of Friedman Plot, J. Thermal Anal., 31, 547-551,1986.

[25] Kissinger, H. E., *Reaction Kinetics in Differential Thermal Analysis*, Anal. Chem., **29**, 1702-1706, 1957.

[26] Nunez, L., Fraga F., Nunez M. R., Villanueva, M., *Thermogravimetric* Study of The Decomposition Process of The System BADGE (n=0)/1,2 DCH, Polymer, **41**, 4635-4641, 2000.

[27] Marimuthu, A., Madras, G., *Effect of Alkyl-Group Substituents on the Degradation of Poly(alkyl methacrylates) in Supercritical Fluids*, Ind. Eng. Chem. Res., **46**, 15-21, 2007.

[28] Coats, A. W., Redfern, J. P., *Kinetic Parameters from Thermogravimetric Data*, Nature, **201**, 68-69, 1964.

[29] Tang, W., Liu, Y., Zhang, H., Wang, C., New Approximate Formula for Arrhenius Temperature Integral, Thermochim. Acta, **408**, 39-43, 2003.

[30] Madhusudanan, P. M., Krishnan, K., Ninan, K. N., New Equations for Kinetic-Analysis of Nonisothermal Reactions, Thermochim. Acta, **221**, 13-21, 1993.