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ABSTRACT 
 
The transverse vibration of a beam with intermediate point constraints subjected to a moving harmonic load is 
analyzed within the framework of the Bernoulli-Euler beam theory. The Lagrange equations are used for 
examining the dynamic response of beams subjected to the moving harmonic load. The constraint conditions 
of supports are taken into account by using Lagrange multipliers. In the study, for applying the Lagrange 
equations, trial function denoting the deflection of the beam is expressed in the polynomial form. By using the 
Lagrange equations, the problem is reduced to the solution of a system of algebraic equations. The system of  
algebraic equations is solved by using the direct time integration method of Newmark [8]. Results of 
numerical simulations are presented for various combinations of constant axial velocity, excitation frequency, 
number of point supports and various values of damping coefficient.  
Keywords: Forced vibrations of beam, free vibrations of beam, moving harmonic load 
 
HAREKETLİ HARMONİK YÜKLER ETKİSİNDEKİ VİSKOELASTİK KİRİŞLERİN TİTREŞİMİ 
 
ÖZET 
 
Bu çalışmada hareketli harmonik yükler etkisindeki kirişlerin enine titreşimleri Bernoulli-Euler kiriş teorisi 
çerçevesinde incelenmiştir. Problemin çözümü için Lagrange denklemleri kullanılmıştır. Problemde mesnet 
şartları Lagrange çarpanları kullanılarak sağlanmıştır. Çalışmada, Lagrange denklemlerinin uygulanması için 
kirişin yerdeğiştirmelerini ifade eden çözüm fonksiyonunun oluşturulmasında polinomlar kullanılmıştır. 
Lagrange denklemleri kullanılarak problem cebrik denklem sisteminin çözümüne indirgenmiştir. Bu denklem 
sistemi Newmark [8] yöntemi kullanılarak çözülmüştür. Problemde kirişin yerdeğiştirmeleri, hareketli 
harmonik yükün frekansı ve hızı, çeşitli sönüm oranları ve açıklık sayısı için sayısal olarak incelenmiştir.  
Anahtar Sözcükler: Zorlanmış kiriş titreşimleri, serbest kiriş titreşimleri, hareketli harmonik yük 
 
 
1. INTRODUCTION  
 
Transverse vibration of beams subjected to moving loads has been an interesting research topic 
for long years. Vibrations of this kind occur in many branches of engineering, for example in 
bridges and railways. Many methods have been presented for response prediction, but only the 
notable ones cited here. The earliest work on the the behaviour of a single-span beam subjected to 
a constant moving harmonic load was reported by Timoshenko and Young [1]. Fryba [2] 
presented various analytical solutions for vibration problems of simple and continuous beams 
under moving loads in his book. H.P. Lee [3] utilized Hamilton’s principle to solve the dynamic 
response of a beam with intermediate point constraints subjected to a moving load by using the 
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vibration modes of a simply supported beam as the assumed modes. Abu-Hilal and Mohsen [4] 
studied the dynamic response of elastic homogenous isotropic beams with different boundary 
conditions subjected to a constant force travelling with accelerating, decelerating and constant 
velocity types of motion. Zheng et al. [5] considered the dynamic response of the continuous 
beams subjected to moving loads by using the modified beam vibration functions. Dugush and 
Eisenberg [6] examined vibrations of non-uniform continuous beams under moving loads by 
using both the modal analysis method and the direct integration method. Zhu and Law [7] 
analyzed the dynamic response of a continuous beam under moving loads using Hamilton’s 
principle and eigenpairs obtained by the Ritz method.  

In the present study, the Lagrange equations are used for examining the dynamic 
response of viscoelastic beams subjected to a moving harmonic load with constant axial speed. 
The constraint conditions of the supports are taken into account by using Lagrange multipliers. In 
the study, for applying the Lagrange equations, the trial function denoting the deflection of the 
beam is expressed in the polynomial form. By using the Lagrange equations, the problem is 
reduced to a system of algebraic equations. This system of algebraic equations is solved by using 
the direct time integration method of Newmark [8]. The convergence of the study is based on the 
numerical values obtained for various numbers of polynomial terms. Results in this paper are 
readily applicable for further investigation in this field. 

 
2. THEORY AND FORMULATIONS 
 
A continuous viscoelastic Bernoulli-Euler beam with N  point supports subjected to a moving 
harmonic load is depicted in Fig 1. The considered beam has a uniform cross sectional area, and 
its length is L . The beam is constrained against vertical displacements at various points. The 
constraint conditions are satisfied by using Lagrange multipliers. A moving harmonic load ( )Q t  
is applied in the y direction from left to right with prescribed constant speed in the axial direction. 
The assumptions made in the following formulation are that transverse deflections are small so 
that the dynamic behaviour of the beam is governed by the Bernoulli-Euler beam theory. 
Moreover, all the transverse deflections occur in the same plane, defined by the x and y axes. The 
y axis is chosen at the midpoint of the total length of the beam as shown in Fig. 1. 
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Figure 1. A continuous beam with N point supports subjected to a moving harmonic load 

 
According to the Bernoulli-Euler beam theory, the elastic strain energy of the beam at 

any time in Cartesian coordinates due to bending is 
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where E , ( )I x  and ( , )w x t  are the Young’s modulus and the moment of inertia of the cross 
section of the beam and the displacement function of the beam. 
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Neglecting the rotatory inertia effects, the kinetic energy of the beam at any time is 
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where ρ  and A(x) are the mass density and the cross-section area of the beam. The Kelvin model 
for the material is used. In this case, the dissipation function of the beam at any time is 
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where ri and 2γ  are the coefficient of internal damping of the viscoelastic beam and 
proportionality constant of internal damping, respectively. The potential energy of the external 
force ( )tQ  at any time is 
 

( ) ( )QV Q t w x ,t= −                 (5a) 

( ) sin ( )Q t P tΩ=                  (5b) 
 

where P is the amplitude of the moving harmonic force, Ω  is the excitation frequency, Qx  is the 
coordinate of the moving harmonic load at any time t  and expressed as 
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where v  is the axial velocity of the moving harmonic load. The functional of the problem is 
 

( )= − +I T U V                    (7) 
 

It is known that some expressions satisfying geometrical boundary conditions are 
chosen for ( , )w x t  and by using the Lagrange equations, the natural boundary conditions are also 
satisfied. Therefore, by using the Lagrange equations and by assuming the displacement ( , )w x t  
to be representable by a linear series of admissible functions and adjusting the coefficients in the 
series to satisfy the Lagrange equations, an approximate solution is found for the displacement 
function. For applying the Lagrange equations, the trial function ( , )w x t  is approximated by 
space-dependent polynomial terms 0 1 2, , ,...., Mx x x x  and time-dependent generalized 
displacement coordinates ( )mA t . Thus  
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where ( )w x,t  is the dynamic response of the beam subjected to the moving harmonic load. The 
constraint conditions of the supports are satisfied by using the Lagrange multipliers. The 
constraint conditions are  
 

( ), 0i S iw x tλ = ,   1 2 3=i , , ,....., N                (9) 
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where S ix denotes the location of the i  th support, N denotes the number of the point supports. In 

Eq. (9), iλ  quantities are the Lagrange multipliers which are the support reactions in the 
considered problem. The Lagrange multipliers formulation of the considered problem necessities 
the construction of the Lagrangian functional;  
 

( ),= + i S iL I w x tλ ,  1 2 3=i , , ,....., N              (10)  
 

which attains its stationary value at the solution ( )( , ),Si iw x t λ . The generalized damping force 

rDQ  can be obtained from the dissipation function by differentiating R  with respect to kA   
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Then, using the Lagrange equations  
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where the dot above is the derivative with respect to time, and introducing 
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yield the following equation;  
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where ( )kx ′′  is the second derivative of the kx . [ ]A , [ ]B , [ ]C  are the matrices that do not depend 

on time, but { }D depends on time; namely k
Qx  depens on time.  

For free vibration analysis, the time-dependent generalized displacement coordinates 
can be expressed as follows:  

 

( ) i t
m mA t A e ω=                  (16) 

 

By substituting Eq. (16) into Eq. (14) and taking the damping matrix of the beam [ ]B  

and the external forces matrix { }D  as zero in Eq. (14), this situation results in a set of linear 
homogeneous equations that can be expressed in the following matrix form;  

 

[ ]{ } [ ]{ } { }2 0m mA A C Aω− =                 (17)  
 

where ω  is the natural frequency of the considered beam. By using the direct time integration 
method of Newmark [8], Eq. (14) is solved and mA , mA , mA  and iλ  coefficients are obtained 
for any time t . Then, the displacements, velocities and accelerations at the considered point and 
time can be determined by using Eq. (8). 
 
3. NUMERICAL RESULTS  
 
A number of numerical examples are presented to demonstrate the versatility, accuracy and 
efficiency of the present method. The obtained results are in good agreement with the previously 
published results where applicable. In the following figures, Qx  is the distance between the 
moving harmonic load and the midpoint of the beam.  

At this stage, a convergence study is carried out. For this purpose, the natural 
frequencies of the considered beam are determined by calculating the eigenvalues iω  of the 
frequency Eq. (17). In Table 1, the calculated natural frequencies are compared with those of 
Timoshenko and Young [1] and Fyrba [2]. The convergence is tested by taking the number of the 
polynomial terms 4, 5, 6, 8, 10, 12, 14 . It is seen that the present converged values show excellent 
agreement with those of Timoshenko and Young [1] and Fyrba [2].  
 

Table 1. Convergence study of the natural frequencies iω (rad/s) of the beam and comparison        
of the obtained results with the existing exact results  

 
Number of 
Polynomial 
Terms 

1ω  2ω  3ω  4ω  

4 542.0610 2485.9376 - - 
5 488.8704 2485.9376 6526.4929 - 
6 488.8704 1962.7350 6526.4929 13667.579 
8 488.8704 1954.9982 4473.3338 8149.2914 
10 488.8704 1954.9982 4399.8340 7830.1475 
12 488.8704 1954.9982 4397.8998 7819.5093 

Present Study 

14 488.8704 1954.9982 4397.8998 7819.5093 
References [1] 
and [2]  488.6999 1954.7999 4398.2999 7819.1998 

 
It is observed from Table 1 that, the natural frequencies decrease as the number of the 
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polynomial terms increases: It means that the convergence to the exact value is from above. By 
increasing the number of the polynomial terms, the exact value can be approached from above. It 
should be remembered that energy methods always overestimate the fundamental frequency, so 
with more refined analyses, the exact value can be approached from above. Convergence study 
indicates that the calculated values are converged to within three significant figures.  

In all of the calculations, the damping ratio ξ  is taken as 0 0 0 05 0 10⋅ ⋅ ⋅, ,  and 
dimensionless damping coefficient which is given in reference [4] as follows is considered.  

 

2
1 2

2
+

= k

k

γ γ ωξ
ω

                 (18) 
 

In Eq. (18), 1γ  is the proportionality constant of the external damping, 2γ  is the 
proportionality constant of the internal damping and kω  is the natural circular frequency of the k 
th mode, respectively. It is known that external damping is very small with respect to internal 
damping. Therefore, the external damping is ignored in this study. In the case of damping by 
using Eqs. (4) and (18), the damping coefficient ir  is obtained. From here on, the number of the 
polynomial terms is taken as 12 in all of the numerical investigations. 
 
3.1. A Single-Span Beam 
 
A single-span beam with simply-supported ends is considered. The cross sectional area A and the 
mass density ρ are 3101461 −×⋅ m2 and 7700  kg /m3, respectively. The total length L is 1 m and 
Young’s modulus E is 000207 MPa ( 1821635 ⋅=EI  Nm2 ). The deflection at the centre of the 

span due to moving harmonic load w  is normalized by the static deflection D 3( 48 )=D PL / E I . 
The numerical integration is performed using Gaussian quadrature. The frequency ratio β  is 
taken as defined in reference [4] as follows  
 

1ω
Ωβ =                   (19) 

 

where 1ω is the natural frequency at the first mode of vibration of a simply supported beam 
calculated from the Eq. (17), has a value of 87488 ⋅  rad/s. The effect of the damping is 
represented by the damping ratio 0 0 0 05 0 10= ⋅ ⋅ ⋅, ,ξ  in the calculations. 

In Figs. 2-5, the normalized ( )w / D  deflections at the center of a single-span beam are 
shown. These deflections occur due to moving harmonic load travelling at constant axial velocity, 

515 ⋅=v , 39=v , 78=v  and 155=v  m/s, for various values of ξ . These results are compared 
with those given in references [1,3,4] for moving load and moving harmonic load. Good 
agreement is observed. 

Figs. 2-5 show the effects of the velocity, the excitation frequency and damping for the 
single-span beam. In all these figures, the effect of damping is clear for all cases where an 
increase in damping yields, in general, a decrease in the response. It is seen from the Figs. 2-5 that 
for the small values of velocity, the excitation frequency has more important effect on the 
behaviour of the beam, i.e; for especially 515 ⋅=v  m/s. The maximum dimensionless absolute 
displacement of the beam is increased by increasing the values of β  until 1=β . The above 
mentioned displacement reaches a maximum value at resonance ( 1=β ), and then with the 
increase in β , it decreases. The case of resonance is much more visible for this velocity. 
Because, as the values of velocity increases, the acting time of the load on the beam becomes 

Vibration of Viscoelastic Beams Subjected to... 



 
 

 122

shorter. Therefore, at high values of the velocity, the load leaves the beam without completing its 
one-period. It is seen from the obtained results that in the case of 0=β , the maximum dynamic 
deflection at the centre of the span is associated with speed 78=v  m/s. Moreover, it should also 
be pointed out that negative displacement means tension stresses at the top of the beam. The 
dimensionless deflection for a single-span beam is independent of the magnitude of the force. In 
the case of moving load, namely 0=β , the obtained results are excellent agreement with those of 
Lee [3].  

 
 

 
 

 

Figure 2. Normalized deflections at the centre of a single-span beam varying β  for         

515 ⋅=v  m/s, ( )  00 ⋅=ξ , ( )− − −  050 ⋅=ξ , ( )⋅ ⋅ ⋅ ⋅ ⋅  100 ⋅=ξ  
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Figure 3. Normalized deflections at the centre of a single-span beam varying β  for 39=v  m/s, 

( )  00 ⋅=ξ , ( )− − −  050 ⋅=ξ , ( )⋅ ⋅ ⋅ ⋅ ⋅  100 ⋅=ξ  
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Figure 4. Normalized deflections at the centre of a single-span beam varying β  for             

78=v  m/s, ( ) 00 ⋅=ξ , ( )− − −  050 ⋅=ξ , ( )⋅ ⋅ ⋅ ⋅ ⋅  100 ⋅=ξ  
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Figure 5. Normalized deflections at the centre of a single-span beam varying β  for           

155=v  m/s, ( )  00 ⋅=ξ , ( )− − −  050 ⋅=ξ , ( )⋅ ⋅ ⋅ ⋅ ⋅  100 ⋅=ξ   

 
3.2. Two-Span Beam 
 
A two-span viscoelastic beam with simply-supported ends and a simple support at the middle of 
the span of the beam is considered. The geometrical and the physical properties of the beam are 
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the same of those of the first problem’s. The fundemental natural frequency of the beam at the 
first mode is 991954 ⋅  rad/s which is obtained from the equation [17]. The damping ratio is 
assumed to be 0 05= ⋅ξ . The deflections are normalized by the deflection D 3( 48 )=D PL / EI  
of the single-span beam. Figs. 6-7 show the normalized deflections under the moving harmonic 
load for a two-span viscoelastic beam. In the case of moving load, namely 0=β , the present 
results are in perfect agreement with those given in references [3] and [5].  

Fig. 6 shows the dynamic response of a two-span beam for different values of the axial 
velocity of the load for 1=β  and 0 05= ⋅ξ . For the considered parameters, it is noticed that in 
the low velocities of moving harmonic load, i.e., 515 ⋅=v  m/s, the beam has much more higher 
maximum dynamic displacement than in the fast velocities of the moving harmonic load and there 
is a drastic decrease in the dynamic displacement by increasing the value of the velocity. 

Fig. 7 shows the effect of the excitation frequency Ω  represented in the calculations by 
the frequency ratio β  for a two-span beam, where the velocity is held constant ( = 15 5 m/s)v ⋅ . It 
is clear from Fig. 7 that the circular frequency Ω  has visible effect on the shape of the dynamic 
displacement. Higher excitation frequency leads to sharper shapes and larger maximum 
deflections until a value of β . By increasing β  until a certain value, the displacements increase. 
However, after that certain value of β , the displacements decrease with the increase in β . This 
situation is observed from Fig. 7 Additionally, the dynamic displacements for two-span beam are 
very small with respect to the single-span beam. 
 

 
 

 
 

Figure 6. Normalized deflections under moving harmonic load for two-span beam for     
515 ⋅=v , 39=v , 78=v , 155=v  m/s, 050 ⋅=ξ , 1=β  
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Figure 7. Normalized deflections under the moving harmonic load for two-span beam 
for 0 0 0 25 0 50 1 0 2 0= ⋅ ⋅ ⋅ ⋅ ⋅, , , ,β , 0 05= ⋅ξ , 515 ⋅=v  m/s 

 
4. CONCLUSIONS 
 
The dynamic deflections of beams subjected to a moving harmonic load with a constant velocity 
have been investigated. To use the Lagrange equations with the trial function in the polynomial 
form and to satisfy the constraint conditions by the use of Lagrange multipliers is a very good 
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way for studying the dynamic behavior of continuous beams subjected to a moving harmonic 
load. Numerical calculations have been conducted to clarify the effects of the three important 
parameters, the axial velocity of the moving harmonic load, the excitation frequency of the 
moving load and the damping of the viscoelastic beam. It is observed from the investigations that 
the axial velocity of the load, the frequency of the load, the damping of the viscoelastic beam 
have a very important effect on the deflections. 

All of the obtained results are very accurate and may be useful for designing structural 
and mechanical systems under moving harmonic loads. 
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