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ABSTRACT

The main objective of structural engineers through out design history has been to obtain the optimum structure
under the prescribed design conditions which can not only withstand external loads safely but also achieve an
economic solution. The paper focuses on the use of the fuzzy set theory to optimum design of plane truss
structures. The approach is illustrated on planar truss optimization problems and the results are discussed.
Keywords: Optimimum design, Fuzzy set theory, Plane truss structures.

DUZLEM KAFES YAPILARIN FUZZY OPTiIMUM DiZAYNI
OZET

Dizayn siiresince yapt mithendisinin esas amaci, 6nceden tanimlanmig dizayn kosullari altinda hem dis
yiiklere kars1 dayanima sahip ve hemde ekonomik bir optimum yap1 elde etmektir. Bu ¢alisma, diizlem kafes
sistemlerin optimum dizaynlarinin fuzzy kiime teorisi ile elde edilmesi ile ilgilidir. Yaklasim, diizlem kafes
yapilarin optimizasyonu ile ilgili 6rnekler ile agiklanmis ve sonuglar tartisilmustir.
Anahtar Sézciikler: Optimum dizayn, Fuzzy kiime teorisi, Diizlem kafes yapilar.

1. INTRODUCTION

As the optimization problems are great of importance in the field of structural engineering,
numerous research works have been carried out and various algorithms can be mainly classified
as the optimality criteria approaches and the mathematical programming techniques are detailed
given in [1-5].

During the past ten years there has been a growing interest in algorithms, which rely on
analogies to natural processes. The emergence of massively parallel computers made these
algorithms of practical interest[6-12]. These well-known algorithms and techniques in this class
include artificial neural networks, genetic algorithms, fuzzy logic, evolution algorithms and
simulated annealing [22-29]. Although all these techniques have been adapted to the structural
analysis, design and optimization problems, artificial neural networks (ANN) and fuzzy logic
applications are widely used nowadays [13-20 ].

The main objective of structural engineering is to design structures which withstand
external loads safely and at a minimum cost or weight [30-32]. During last decades, the
developments in optimization methods which attempt to find the most economical solutions to
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design problems by satisfying the required safety and rigidity constraints and minimizing the cost
function, as well as the developments in nonlinear analysis methods which aim to determine the
real behavior of structures under external effects give the structural engineer the opportunity to
achieve this objective. Structural optimization is concerned with the computerized automatic
design of structures which are optimum with respect to some major design parameter. In the
structural engineering, this parameter has usually been structural weight, though cost or other
factors are now being considered. The parameter being optimized is referred to as the objective
function and the variables which can be changed to achieve the desired optimum are referred to as
design variables. Mathematically this can be defined by saying that the problem is [32]

Minimize or Maximize f(X) X eR"
Subject to the constraints Cj(X) <0 j =1,..,m

X!gxisxiu i=1,..,n

where the design variables X € R" are positive and the range of X for which the constraints are
not violated constitute the feasible region, f(X) is the objective function to be minimized

(maximized), C j (X) are the behavioral constraints, X;j and xiu are lower and upper bounds on a

typical design variable X;. Equality constraints are usually rarely imposed. Whenever they are

used they are treated for simplicity as a set of two inequality constraints. If the objective function
f(X) is structural weight the design variables are size parameters such as bar cross-sections, plate

thickness and, in certain cases, shape parameters which vary the geometrical configuration of the
structures.

2. FUZZY MULTI-OBJECTIVE OPTIMIZATION

The fuzzy set theory defined by Zadeh [9] has been used to represent uncertian or noisy
information in mathematical form. Fuzzy logic is an approximate reasoning method for coping
with life’s uncertainities. Occasionally, the characteristics of various systems are very difficult to
describe with mathematical equations because of their complexity. In these cases, human experts
may achive control by control values which are squeezed out from their long experience and
represented by intuitive natural language.

It is not uncommon in civil engineering to divide the information avaliable for decision
making into objective and subjective parts. The objective is discussed in countable information
about the external world, while the subjective is concerned with the wisdom, experience and
intuition of the engineer. In solving engineering mechanics problems, the loads, the material
behavior and the system properties may be linguistically specified. For example, the load acting
on the structure may be described with linguistic variables such as, severe, heavy or light. Further,
the member’s strength may be described using such as qualitative terms as highly stiff, flexible or
very flexible. The fuzzy objective function and constrains are defined by their membership
functions.

The fuzzy optimum design and fuzzy dynamic analysis of structures was considered by
several researchers in the past [6-8,10,17]. The application of fuzzy sets theory to several civil
engineering problems was reviewed by Brown and Yao [4]. More detailed information can be
found in [4,5]. The conventional structural optimization problem can be given as Find X which
minimizes f(X) Subject to

CJ(X)S bJ?JZlaza"‘am (la)
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X >0 (1b)

where p i denotes the upper bound value on the constraint function ¢ j(X)with b i > 0. In the

fuzzy approach, this problem can be defined as[4,8]
Find X which minimizes (X)

Subject to
Cj(X) ’é‘ 6j;j: 1’2""’m (2a)
X>0 (2b)

where ordinary upset C j denotes the allowable interval for the constraint function C i
C = [0, b j] , and the wave symbols indicate that the operations or variables contain fuzzy
information. If ¢ j represents the permissible variation of ¢ j(X)about b B then

éj = [0, bj + dj] . The constraint Cj(X) e E;jmeans that cj is a member of a fuzzy subset

C jin the sense of pC.(C j))0. The fuzzy feasible region is defined by considering all the
J

constraints as
. m
§= n ¢ 3)
j=1
Thus, the membership degree of any design parameters or vector X to fuzzy feasible

region S is given by

Hs(X) =" min  [p_ (X)] (©)

i=12,...m Cj

Namely, the minimum degree of satisfaction of the design vector X to all of constraints.
A design vector X can be considered feasible provided Hg (X))0 and the differences in the

membership degrees of two design parameters X; and X, imply nothing but variation in the
minimum degree of satisfaction of X; and X, to the constraints. Therefore, the optimum design or

optimum solution will be a fuzzy domain D in S with ?(X). The fuzzy domain D is described
by

D={usXRN{ N HC,[CJ-(X)]} (52)
i=12,..m

that is,

up 0 = minfue (X, min b (XD (sb)

i=12,..m I
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where pD(X)and g (X) denote the membership functions of the ith objective and jth
Cj

constraint functions, respectively. If the membership function D is unimodal and has a unique

maximum, then the optimum solution X" is one for which the membership function maximum

bp (X)) = maxiup (X)]; X €D (©)

Let f opt be the optimum value of f for the problem stated in Eq. (1) and f opt ™ Af the
optimum value of f for the problem obtained by replacing p j by b it d i with ¢ j)O ,j=1.2,...m
in Eq. (1). It is also noted that fopt is found with a tighter set of constraints, while fopt — Af is
found with a relaxed set of constraints. This is always possible since there will be lower p i and

upper b it d i limiting values for each response quantity or constraints function ¢ j(X)in the

presence of fuzzy parameters. For computational convenience, the membership function of the
objective is assumed to vary linearly between f opt and f opt ™ Af, as indicated in Fig.1a [8].

Thus

pf(X)zl; if f(x)<f0pt—Af 7
fopt = Af — (X) ) <1
X)=1+(———); if f < < - Af ®)
Mf Af opt opt
pf(X)z();if f(X)>f0pt )
ue (X) qu(>'<)
A A
1
1 . !
! f(X) | _
i N Y
> 0 by bj+d;
O fopl'Af fopl

Figure 1. Membership functions for (a) objective and (b) constraints

As similar the objective function, the membership functions for the constraint (Fig 1b)
can be defined as

UCj(X):l; if Cj(x)<bj (10)
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cjX)=bj

b (X)=1-(———); if bj<cj(X)<bj+dj (11)

Cj IR I

dj

g (X)=0;if ¢i(X)>pij+d;i;i=12,...m (12)

Cj J I

A simple flowchart for fuzzy optimization procedures is shown in Figure 2.
Start
RETURN

Give optimization parameters
Give constraints
Obtain fuzzy parameters

Find X which minimizes ?(X)
UNTIL (minimum error criteria is satisfied)
End.

Figure 2. A simple flow diagram for fuzzy optimum design
3. NUMERICAL EXAMPLES

Example 1: Consider minimum weight design of three-bar truss problem as shown in Fig. 3. This
truss has frequently been used as an example in structural optimization literature. A detailed
description of the formulation of the problem is given elsewhere [8] and only a final version is
given here. Two different configurations as Case-I and Case-II are considered (Fig 3). The
classical optimization problem of this problem is given as

Find X = { X1\ which minimizes
X2

PL
710 = 22 X + X5 and ¢ (x) = E[l/ufz X2+ X))l

Subject to given displacements (u<u;) and stress(c;< o™, o< o™, o)< o™)

constraints. For Case-I: P =20N, p = 1 N/em®, 6™ = 20 N/em?, 6™" = -15 N/em?, X;(max) =5
cm’, Xi(min) =0.1 cm?, L =100 cm. Where E is Young’s modulus, L the semiwidth of the truss,
and P is the load. Fuzzy optimization problem are given

A
Find X = q X; ¢ which maximizes f(x) = A
X2
Subject to (for stress)
3(2\/5x1 +Xp)- 5\/5
A > -1
V2
(X + V2 x) - (2 xF + 2%, X,)

A> -1
0.2(\/5 X12 +2X1Xz)
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1-(xy+ ‘/EXZ)
A>{——m——, -1
0.2(x1+\/gxz)

4x2—3(\5x12+2x1x2)
A > -1

0.6(V2 X2 +2 X, X5)

2- (%1 + V2 x,)
A d o KTNEXIL
0.2(x; ++2x,)

2-(x+ ‘/5 X7)
Az2y——— -1
0.2(X; +2X,)
(for displacement of the loaded join)
0.1 - Xj
0.02

A

1-1 i=12

The results of this problem is given by A = 0.53; X; = 0.61 cm? and X, =0.86 cm?

with f = 2.5854 . Where f is the aim function for fuzzy optimization problem. For Case-II given
data: P =50000 N, u; < 0.05 cm, u, < 0.1cm, L= 175cm, L, = 200cm, L3 = 250 cm. Fuzzy
optimum design of truss is obtained as: X; = 74.92 cnt’, Xy =22.22 cm’ and X3 =40.15

cm? with f = 306.7.

e B

X
X X=X L 1

P P \
' Uz

Case-1 Case-11
Figure 3. Three-bar planar truss
Example-2: The Ten-bar truss problem is considered (Figure 4). This truss has been
extensively used as a test problem in structural optimization literature. The design variables of for
this problem were the areas of members. Material properties, stress and displacement constraints

and minimum areas used for this example : Modulus of elasticity, E = 6.895x10* MPa, L= 914.4
cm, P = 44537 kN, p= 0.027 N/em®, o; < 172.25 Mpa (j =1,2,...,10), u; < 5.08 cm (i =1,2,3,4).
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The fuzzy optimization results are given in Table 1. Classical optimization [21,30] results are
also given in this table for comparison.

Figure 4. Ten- bar planar truss structures

Table 1. Comparison of the results

Design variables [cm’]
Xi X5 X3 Xy Xs Xs X7 Xs X Xio
Ref30 51.14 0.645 5198 2541 0.645 0.645 3593 3593 37.08 0.645
Ref21 51.14 0.65 5195 2538 0.65 0.65 36.02 36.02 37.12 0.65
This 5221 0.661 53.01 2426 0.661 0.661 3528 3528 3850 0.661
Study

Example 3: Consider minimum weight design of a statically determinate nine-bar truss
problem under a specified loading conditions as shown in Figure 5. Constraints were imposed by
considering member vertical displacement (u; and u;) and horizontal displacement (u,).

us

5 3 > P T
8

— — — . —
Figure 5. Nine- bar planar truss structures

A detailed description of the formulation of the problem is given elsewhere [21] and
only a final version is given here. Displacement constraints are 0.1 cm at nodes 2 and 3 in
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horizontal and vertical directions, and 0.2 cm at nodes 1 in vertical directions. Given data is
applied load, P =30000 N, and member length, L= 100 cm. The obtained results are summarized
in Table 2 with the results given by Kanarachhos et al. [21] by the optimality criteria. It is shown
that, the results compare very well with the solution of Kanarachhos et al. [21].

Table 2. Comparison of the results for Nine-bar truss

: 7
Cross sectional area [cm”]

X X5 X3 X4 Xs X6 X5 Xs

Optimality 46.10 33.09 33.11 23.11 17.1  33.11 18.10 20.21
Criteria
[Ref.31]

Fuzzy 44.25 35.96 36.01 21.52  16.85 36.01 19.47 21.35
Optimization

[This Study]

4. CONCLUDING REMARKS

The optimizaton of plane truss structures containing fuzzy information has been considered. The
results found by using fuzzy theory are sufficiently close to the results obtained by classical
optimization theory. The illustrative numerical examples show that the fuzzy set theory seems to
be a rational and effective approach for optimization of structures. Optimization using fuzzy sets
theory was seen to be faster than the classical theory. On the other hand, the required computing
capacity has relatively decreased. Mathematically, considering multiple constraints do not cause
difficulties as with the classical optimization approach. The present approach can be used
whenever the reliability of the structure is specified with respect to several criteria such as stress,
deflection, buckling and natural frequency of vibration.
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