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ABSTRACT 
 
The main objective of structural engineers through out design history has been to obtain the optimum structure 
under the prescribed design conditions which can not only withstand external loads safely but also achieve an 
economic solution. The paper focuses on the use of the fuzzy set theory to optimum design of plane truss 
structures. The approach is illustrated on planar truss optimization problems and the results are discussed. 
Keywords:  Optimimum design, Fuzzy set theory, Plane truss structures. 
 
 
DÜZLEM KAFES YAPILARIN FUZZY OPTİMUM DİZAYNI 
 
ÖZET 
 
Dizayn süresince yapı mühendisinin esas amacı, önceden tanımlanmış dizayn koşulları altında hem dış 
yüklere karşı dayanıma sahip ve hemde ekonomik bir optimum yapı elde etmektir. Bu çalışma, düzlem kafes 
sistemlerin optimum dizaynlarının fuzzy küme teorisi ile elde edilmesi ile ilgilidir. Yaklaşım, düzlem kafes 
yapıların optimizasyonu ile ilgili örnekler ile açıklanmış ve sonuçlar tartışılmıştır. 
Anahtar Sözcükler: Optimum dizayn, Fuzzy küme teorisi, Düzlem kafes yapılar. 
 
 
1. INTRODUCTION  
 
As the optimization problems are great of importance in the field of structural engineering, 
numerous research works have been carried out and various algorithms can be mainly classified 
as the optimality criteria approaches and the mathematical programming techniques are detailed 
given in [1-5]. 

During the past ten years there has been a growing interest in algorithms, which rely on 
analogies to natural processes. The emergence of massively parallel computers made these 
algorithms of practical interest[6-12]. These well-known algorithms and techniques in this class 
include artificial neural networks, genetic algorithms, fuzzy logic, evolution algorithms and 
simulated annealing [22-29]. Although all these techniques have been adapted to the structural 
analysis, design and optimization problems, artificial neural networks (ANN) and fuzzy logic 
applications are widely used nowadays [13-20 ]. 

The main objective of structural engineering is to design structures which withstand 
external loads safely and at a minimum cost or weight [30-32]. During last decades, the 
developments in optimization methods which attempt to find the most economical solutions to 
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design problems by satisfying the required safety and rigidity constraints and minimizing the cost 
function, as well as the developments in nonlinear analysis methods which aim to determine the 
real behavior of structures under external effects give the structural engineer the opportunity to 
achieve this objective. Structural optimization is concerned with the computerized automatic 
design of structures which are optimum with respect to some major design parameter. In the 
structural engineering, this parameter has usually been structural weight, though cost or other 
factors are now being considered. The parameter being optimized is referred to as the objective 
function and the variables which can be changed to achieve the desired optimum are referred to as 
design variables. Mathematically this can be defined by saying that the problem is [32] 

Minimize or Maximize   Rn  Xf(X)      ∈  

Subject to the constraints  0≤(X)C j      mj ,...,1=  

   Xu
iXiXl

i ≤≤      n,...,i 1=  

where the design variables RnX ∈  are positive and the range of X  for which the constraints are 
not violated constitute the feasible region, )X(f  is the objective function to be minimized 

(maximized), (X)C j  are the behavioral constraints, Xl
i  and Xu

i are lower and upper bounds on a 

typical design variable Xi . Equality constraints are usually rarely imposed. Whenever they are 
used they are treated for simplicity as a set of two inequality constraints. If the objective function 

)X(f  is structural weight the design variables are size parameters such as bar cross-sections, plate 
thickness and, in certain cases, shape parameters which vary the geometrical configuration of the 
structures. 

 
2. FUZZY MULTI-OBJECTIVE OPTIMIZATION 
 
The fuzzy set theory defined by Zadeh [9] has been used to represent uncertian or noisy 
information in mathematical form. Fuzzy logic is an approximate reasoning method for coping 
with life’s uncertainities. Occasionally, the characteristics of various systems are very difficult to 
describe with mathematical equations because of their complexity. In these cases, human experts 
may achive control by control values which are squeezed out from their long experience and 
represented by intuitive natural language.  

It is not uncommon in civil engineering to divide the information avaliable for decision 
making into objective and subjective parts. The objective is discussed in countable information 
about the external world, while the subjective is concerned with the wisdom, experience and 
intuition of the engineer. In solving engineering mechanics problems, the loads, the material 
behavior and the system properties may be linguistically specified. For example, the load acting 
on the structure may be described with linguistic variables such as, severe, heavy or light. Further, 
the member’s strength may be described using such as qualitative terms as highly stiff, flexible or 
very flexible. The fuzzy objective function and constrains are defined by their membership 
functions. 

The fuzzy optimum design and fuzzy dynamic analysis of structures was considered by 
several researchers in the past [6-8,10,17]. The application of fuzzy sets theory to several civil 
engineering problems was reviewed by Brown and Yao [4]. More detailed information can be 
found in [4,5]. The conventional structural optimization problem can be given as Find X which 
minimizes )X(f  Subject to 

b j(X)c j ≤ ; j = 1,2,…,m                                                                                                              (1a) 
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0≥X                   (1b) 
 

where b j denotes the upper bound value on the constraint function )X(c j with 0≥b j . In the 

fuzzy approach, this problem can be defined as[4,8] 
Find X which minimizes )X(f~  
Subject to 
 

C~ j
~)X(c j ∈ ; j = 1,2,…,m                                                                                                            (2a) 

 

0≥X                   (2b) 
 

where ordinary upset C j  denotes the allowable interval for the constraint function c j , 

]b j,[C j −∞= , and the wave symbols indicate that the operations or variables contain fuzzy 

information. If d j  represents the permissible variation of )X(c j about b j , then 

]d jb j,[C~ j +−∞= . The constraint C~ j
~)X(c j ∈ means that c j is a member of a fuzzy subset 

C~ j in the sense of 0〉)C( jµc j
. The fuzzy feasible region is defined by considering all the 

constraints as 
 

C j
m

j
S~ ∩

1=

=                                                                                                                                    (3) 

 

Thus, the membership degree of any design parameters or vector X to fuzzy feasible 

region S~ is given by 
 

)]X(µ
Cj

[min
,...,m,j

)X(µS
21=

=                                                                                                    (4) 

 

Namely, the minimum degree of satisfaction of the design vector X to all of constraints. 
A design vector X can be considered feasible provided 0〉)X(µS and the differences in the 

membership degrees of two design parameters X1 and X2 imply nothing but variation in the 
minimum degree of satisfaction of X1 and X2 to the constraints. Therefore, the optimum design or 
optimum solution will be a fuzzy domain D in S~  with )X(f~ . The fuzzy domain D is described 
by  
 

)]}X(c j[µC j,...,m,j
{)}X(µf{D ∩∩

21=

=                                                                                 (5a) 

 

that is, 
 

)]}X(µ
Cj

[min
,...,m,j

),X(µfmin{)X(µD
21=

=                                                                             (5b) 
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where )X(µD and )X(µ
Cj

 denote the membership functions of the ith objective and jth 

constraint functions, respectively. If the membership function D is unimodal and has a unique 
maximum, then the optimum solution X* is one for which the membership function maximum 
 

)]X(µDmax[)X*(µD = ;   DX ∈                                                                                               (6) 
 

Let f opt be the optimum value of f for the problem stated in Eq. (1) and ∆ff opt − the 

optimum value of f for the problem obtained by replacing b j by d jb j + with 0〉d j , j = 1,2,…,m 

in Eq. (1). It is also noted that f opt  is found with a tighter set of constraints, while ∆ff opt −  is 

found with a relaxed set of constraints. This is always possible since there will be lower b j and 

upper d jb j + limiting values for each response quantity or constraints function )X(c j in the 

presence of fuzzy parameters. For computational convenience, the membership function of the 
objective is assumed to vary linearly between f opt and ∆ff opt − , as indicated in Fig.1a [8]. 

Thus 
 

1=)X(µf ;   if  ∆ff)X(f opt −<                                                                                               (7) 
 

)
∆f

f(X)∆ff opt
()X(µf

−−
+= 1 ;    if   ∆ff)X(ff opt opt

−≤≤                                               (8) 
 

0=)X(µf ; if  f)X(f opt>                                                                                                          (9) 
 

 
 
 
 
 
 
 
 
 
 
 

1 

)X(µf
G

0 

)Xf(
G

fopt fopt-∆f 

 
 

)X(µc j

G

0 

1

)X(c j
G

bj bj+ dj 
 

Figure 1. Membership functions for (a) objective and (b) constraints 
 

As similar the objective function, the membership functions for the constraint (Fig 1b)  
can be defined as  
 

1=)X(µc j
;   if  b j)X(c j <                                                                                                      (10) 
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)
d j

b j)X(c j
()X(µc j

−
−= 1 ;    if   d jb j)X(c jb j +≤≤                                                          (11) 

 

0=)X(µc j
; if  d jb j)X(c j +> ; j = 1,2,…,m.                                                                        (12) 

 

A simple flowchart for fuzzy optimization procedures is shown in Figure 2. 
Start 
    RETURN 

  Give optimization parameters 
  Give constraints 
  Obtain fuzzy parameters 
  Find X which minimizes )X(f~  

   UNTIL  (minimum error criteria is satisfied)  
End.   

Figure 2. A simple flow diagram for fuzzy optimum design 
 
3. NUMERICAL EXAMPLES 
 
Example 1:  Consider minimum weight design of three-bar truss problem as shown in Fig. 3. This 
truss has frequently been used as an example in structural optimization literature. A detailed 
description of the formulation of the problem is given elsewhere [8] and only a final version is 
given here. Two different configurations as Case-I and Case-II are considered (Fig 3). The 
classical optimization problem of this problem is given as 
 

Find 
⎭
⎬
⎫

⎩
⎨
⎧

=
X
XX

2
1  which minimizes  

 

XX)X(f 21221 +=  and ])XX([
E

PL
)X(f 12212 +=  

 

Subject to given displacements (u≤ui) and stress(σ1≤ σmax; σ2≤ σmax; |σ1|≤ σmin)  
constraints. For Case-I: P =20N, ρ = 1 N/cm3, σmax = 20 N/cm2, σmin = -15 N/cm2, Xi(max) =5 
cm2, Xi(min) =0.1 cm2, L = 100 cm. Where E is Young’s modulus, L the semiwidth of the truss, 
and P is the load. Fuzzy optimization problem are given 
 

Find 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

X
X

λ
X

2
1  which maximizes λ(X)f =  

 

Subject to (for stress) 
 

1
2

2521223
−

−+
≥

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ )XX(

λ   

 

1

2122
1220

1 222
12122

−
+

+−+
≥

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)XXX(.

)XXX()XX(
λ  
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1
2 2120

2211
−

+

+−
≥

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)XX(.

)XX(
λ   

 

1

2122
1260

1 222
1234 2

−
+

+−
≥

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)XXX(.

)XXX(X
λ  

 

1
2 2120

2212
−

+

+−
≥

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)XX(.

)XX(
λ  

 

1
2 2120

2212
−

+

+−
≥

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)XX(.

)XX(
λ  

 

(for displacement of the loaded join) 
 

211
020

10
,i;]

.

X i.
[λ =−

−
≥  

 

The results of this problem is given by 530.λ = ; 6101 .X = cm2 and 8602 .X =  cm2 

with 58542.f = . Where f is the aim function for fuzzy optimization problem. For Case-II given 
data:  P =50000 N, u1 ≤ 0.05 cm, u2 ≤ 0.1cm, L1= 175cm,  L2 = 200cm, L3 = 250 cm. Fuzzy 
optimum design of truss is obtained as: 92741 .X =  cm2,  22222 .X =  cm2 and 15403 .X =  

cm2 with 7306.f = . 
 

 

P 

X3= X1 

X2 

X1 

P 

L 

L L 

 
Case-I 

P 

X3= X1 X2 

X1 

P 

L2 

L1 L3 

u1 

u2 
 

 Case-II 
 

Figure 3.  Three-bar planar truss 
 

Example-2: The Ten-bar truss problem is considered (Figure 4). This truss has been 
extensively used as a test problem in structural optimization literature. The design variables of for 
this problem were the areas of members. Material properties, stress and displacement constraints 
and minimum areas used for this example : Modulus of elasticity, E = 6.895×104 MPa, L= 914.4 
cm, P = 445.37 kN, ρ= 0.027 N/cm3, σi ≤ 172.25 Mpa (j =1,2,…,10),  ui ≤ 5.08 cm (i =1,2,3,4). 
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The fuzzy optimization results are given in Table 1. Classical optimization [21,30]  results are 
also given in this table for comparison. 
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Figure 4. Ten- bar planar truss structures 
 

Table 1. Comparison of the results 
 

Design variables [cm2]    
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

Ref.30 51.14 0.645 51.98 25.41 0.645 0.645 35.93 35.93 37.08 0.645 
Ref.21 51.14 0.65 51.95 25.38 0.65 0.65 36.02 36.02 37.12 0.65 
This 

Study 
52.21 0.661 53.01 24.26 0.661 0.661 35.28 35.28 38.50 0.661 

 
Example 3: Consider minimum weight design of a statically determinate nine-bar truss 

problem under a specified loading conditions as shown in Figure 5. Constraints were imposed by 
considering member vertical displacement (u1 and u3) and horizontal displacement (u2).  
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Figure 5. Nine- bar planar truss structures 
 

A detailed description of the formulation of the problem is given elsewhere [21] and 
only a final version is given here. Displacement constraints are 0.1 cm at nodes 2 and 3 in 
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horizontal and vertical directions, and 0.2 cm at nodes 1 in vertical directions. Given data is 
applied load, P =30000 N, and member length, L= 100 cm. The obtained results are  summarized 
in Table 2 with the results given by Kanarachhos et al. [21] by the optimality criteria. It is shown 
that, the results compare very well with the solution of Kanarachhos et al. [21]. 
 

Table 2. Comparison of the results for Nine-bar truss 
 

Cross sectional area [cm2]    
X1 X2 X3 X4 X5 X6 X7 X8 

Optimality 
Criteria 
[Ref.31] 

46.10 33.09 33.11 23.11 17.1 33.11 18.10 20.21 

Fuzzy 
Optimization 
[This Study] 

44.25 35.96 36.01 21.52 16.85 36.01 19.47 21.35 

 
4. CONCLUDING REMARKS 
 
The optimizaton of plane truss structures containing fuzzy information has been considered. The 
results found by using fuzzy theory are sufficiently close to the results obtained by classical 
optimization theory.  The illustrative numerical examples show that the fuzzy set theory seems to 
be a rational and effective approach for optimization of structures. Optimization using fuzzy sets 
theory was seen to be faster than the classical theory. On the other hand, the required computing 
capacity has relatively decreased. Mathematically, considering multiple constraints do not cause 
difficulties as with the classical optimization approach.  The present approach can be used 
whenever the reliability of the structure is specified with respect to several criteria such as stress, 
deflection, buckling and natural frequency of vibration. 
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