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ABSTRACT 
 
Geometrically nonlinear analysis of thin circular plates on Winkler elastic foundations has been studied in this 
paper. The nonlinear partial differential equations obtained from von Karman’s large deflection plate theory 
have been solved by using the discrete singular convolution (DSC) in the space domain and the harmonic 
differential quadrature (HDQ) method in the time domain.  
Keywords: Discrete singular convolution, plates, nonlinear analysis, winkler elastic foundation. 
MSC number/numarası: 65P40, 65Y20, 65D25. 
 
WINKLER ELASTİK ZEMİNE OTURAN DAİRESEL PLAKALARIN GEOMETRİC BAKIMDAN 
LİNEER OLMAYAN DİNAMİK ANALİZİ 
 
ÖZET 
 

Bu çalışmada Winkler elastik zemine oturan ince dairesel plakların geometrik bakımdan lineer olmayan 
analizi verilmiştir. Von Karman teorisi ile elde edilen non-lineer denklem, konum değişkeni için ayrık tekil 
convolution tekniği, zaman değişkeni için harmonik diferansiyel quadrature metodu ile çözülmüştür. 
Anahtar Sözcükler: Ayrık tekil convolution, plak, lineer olmayan analiz, Winkler elastik zemin. 
 
 
 
1. INTRODUCTION 
 
A number of analytical and numerical studies have been conducted on the linear and nonlinear 
dynamic analysis of plates [1-8]. Some selected works in this research topic includes those of 
Sathyamorth [9] and Leissa [10]. In the present work, an approximate numerical solution of the 
Von Karman-Donnel type governing equations for the geometrically nonlinear analysis of thin 
circular plates resting on Winkler elastic foundation is presented. For this purpose, DSC and HDQ 
methods had been used for spatial and temporal discretization of governing differential equations 
of problem. To the authors’ knowledge, it is the first time the discrete singular convolution 
approach has been successfully applied to a circular plate resting on an elastic foundation problem 
of the geometrically nonlinear dynamic analysis. 
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2. DIFFERENTIAL QUADRATURE (DQ) METHOD 
 
Recently, the methods of DQ and and harmonic differential quadrature (HDQ) have been 
extended to solve static and dynamic problems in engineering [12-17]. Harmonic differential 
quadrature has been proposed by Striz et al. [11]. Unlike the differential quadrature that uses the 
polynomial functions, such as power functions, Lagrange interpolated, and Legendre polynomials 
as the test functions, harmonic differential quadrature uses harmonic or trigonometric functions as 
the test functions. Shu and Xue [12] proposed an explicit means of obtaining the weighting 
coefficients for the HDQ. When the )(xf  is approximated by a Fourier series expansion in the 
form 
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and the Lagrange interpolated trigonometric polynomials are taken as 
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for k = 0,1,2,....,N. According to the HDQ, the weighting coefficients of the first-order derivatives 
Aij

   for  i ≠ j can be obtained by using the following formula: 
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A natural, an often convenient, choice for sampling points is that of equally spaced 
point. The equally sampling grid (E-SG) points are given for temporal discretization as; 
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3. DISCRETE SINGULAR CONVOLUTION (DSC) 
 
The discrete singular convolutions (DSC) algorithm was originally introduced by Wie [18] as a 
simple and highly efficient numerical technique.  As stated by Wie [19] singular convolutions 
(SC) are a special class of mathematical transformations, which appear in many science and 
engineering problems, such as the Hilbert, Abel and Radon transforms. In this paper, details of 
DC method are not given; interested readers may refer to the works of Wie [20,22] and Wie et. 
al.[23] who originated the method. The high frequency vibration analysis of plates using DSC 
algorithm is given by Zhau et al.  [24]. Consider a distribution, T and )(tη as an element of the 
space of the test function. A singular convolution can be defined by 
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where )( xtT − is a singular kernel. The DSC algorithm can be realized by using many 
approximation kernels. The regularized Shannon’s kernel (RSK) is given by  
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where ∆=π/(N-1) is the grid spacing and N is the number of grid points. The parameter σ 
determines the width of the Gaussian envelop and often varies in association with grid spacing, 
i.e., σ = rh. Here r is a parameter chosen in computation. It is also known that the truncation error 
is very small due to the use of the Gaussian regularizer, the above formulation given by Eq. (6) is 
practical and has an essentially compact support for numerical interpolation. With a sufficiently 
smooth approximation, it is more effective to consider a discrete singular convolution 
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where Fα (t) is an approximation to F(t) and {xk}is an appropriate set of discrete points on which 
the DSC (5) is well defined. Note that, the original test function η(x) has been replaced by f(x). 
This new discrete expression is suitable for computer realization. The mathematical property or 
requirement of f(x) is determined by the approximate kernel T α . In the DSC method, function f 
(x) and its derivatives with respect to x coordinate at a grid point xi are approximated by a linear 
sum of discrete values f (xk) in a narrow bandwidth [x-xM, x+xM ]. This can be expressed as 
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where superscript n denotes the nth-order derivative with respect to x. The xk is a set of discrete 
sampling points centered around the point x, σ is a regularization parameter, ∆ is the grid spacing, 
and 2M+1 is the computational bandwidth, which is usually smaller than the size of the 
computational domain. The higher order derivative terms )()( xxδ k

n
,σ −∆ in Eq.(6) are given as 

below; 
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where, the differentiation can be carried out analytically. In Eq.(9)  
)()( xxδxxδ kαk −∆=−∆  and superscript (n) denotes the nth-order derivative, and 

2M+1  is the computational bandwidth which is centered around x and is usually smaller than the 
whole computational domain. For example the second order derivative at x=xi of the DSC kernels 
is given as follows: 
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4. GOVERNING EQUATIONS  
 
We consider a thin circular plate resting on Winkler elastic foundation. The geometry of a typical 
circular plate resting on Winkler elastic foundation is shown in Fig.1. Including the normal inertia 
and neglecting damping of the foundation, the distributed reaction from the elastic foundation on 
the plate at any instant of time t is given by [7] 
 

whρwk ttfff +                                              (11) 
 

where w is the lateral displacement, kf is the Winkler parameter, ρf is the material density of the 
foundation, hf is the thickness of the foundation. The general form of the governing equation of a 
geometrically nonlinear analysis of circular plates on Winkler foundation is expressed by [7] 
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In order to derive the dimensionless equations governing the axisymmetric large 
deformations, we introduce the following dimensionless variables and parameters: 
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where D is the flexural rigidity of the plate given by )1(12/ 23 υhED −= , υ Poisson’s ratio, q 
is the uniform static load, c is the damping coefficient, ks is the stiffness of the foundation, h is the 
thickness, r is the radius, w is the deflection of the middle surface of the plate, E denote the 
Young’s modulus, ρ is the material density, ψ is the stress function, R is the non-dimensional 
radius, τ is the non-dimensional time parameter.  
 

 

r = a 

r h 

z

a a 

ks  
Figure 1. A schematic diagram of a circular plate on an elastic foundation 
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Then, the equations for the nonlinear dynamic response of thin circular plates are 
written in the following dimensionless form [7]: 
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4.1. Boundary and initial conditions 
 
In the following the DSC and HDQ methods are applied to discretize the derivatives for spatial 
and time domain in the governing equations, boundary and symmetry conditions and initial 
conditions. After spatial and time discretization, the governing equations, boundary, symmetry 
and initial conditions become 
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For SS boundary conditions: 
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For C boundary conditions: 
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For symmetry conditions: 
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For initial conditions: 
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where Aij and Bij are the weighting coefficients for the first- and second-order derivatives for 
temporal discretization using HDQ, Nτ  is the total time steps, and 

δ ,σ  )1(
∆

, δ ,σ  )2(
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∆ and δ ,σ  )4(
∆ are coefficients of the regularized Shannon’s delta kernel for 

spatial discretization using DSC.  
 
5. NUMERICAL APPLICATIONS AND RESULTS  
 
In this section, a number of numerical examples are given to illustrate the application of the 
present method. A uniform step load of infinite duration, sinusoidal loading of finite duration, and 
triangular load of finite duration have been considered (Figure 2).  

Table 1 shows the non-dimensional displacements of clamped circular plates on 
Winkler foundation for K=100. From the Table 1, it is shown that the convergence of DSC results 
is very good. By comparing with the results of Nath [7], the DSC results using 16 uniform grid 
points are very accurate. When the number of grid points is greater than 16, the DSC results are 
independent of grid. Hence, M=16 value was used during the study .  

Figure 3 shows the time-deflection curves of the clamped circular plate for damping 
coefficient C = 10. The obtained results by HDQ for equally sampling grid (ES-G) and non-
equally sampling grid (NES-G) points are shown in this figure. The results given by Nath  [7] are 
also plotted in this figure. The numerical solution of the HDQ method using non-equally sampling 
grid (NES-G) points is equivalent to the Nath’s results. 

 
 

Dynamic Analysis of Geometrically Nonlinear … 



 
 

 62

τ 
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Figure 2. Dynamic loads considered in numerical applications 
 

Table 1. Non dimensional displacement for clamped circular plates  
 

K=100 
DSC results  

Load 
(P) N=11 N=13 N=16 N=18 N=21 

 
Ref. 7 

0 0.167 0.09 0.01 0 0 0 
4 0.355 0.295 0.245 0.245 0.245 0.243 
8 0.543 0.502 0.478 0.480 0.480 0.481 
12 0.938 0.817 0.731 0.731 0.735 0.725 
16 0.994 0.912 0.890 0.886 0.884 0.894 
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Figure 3. Time- displacement curve for damped dynamic analysis of clamped plates 
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In figure 4, four-different damping coefficient (C=12,16,20,24) is taken into 
consideration for clamped plate. The damping coefficient C has been found to have significant 
influence on the dynamic response of the circular plates. From these curves given in Figures 3 and 
4, it may be concluded that decreasing the damping coefficient, C will always result in increased 
deflection, as expected. Similar results were previously found [5,7]. 
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Figure 4. Time- displacement curve of clamped plates for various damped coefficients  
 

The effect of K on the response of clamped circular plates resting on Winkler elastic 
foundation under the step load P=10 is shown in figure 5 together with the results of Nath [7]. The 
present results are in very good agreement with those of Nath [7] for step load.  
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Figure 5. Dynamic response of clamped plates for infinite duration step load 
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For clamped support condition, the effect of K on the response of circular plate under 
the sinusoidal loading is shown in Figure 6. It is interesting to note, however, that the response to 
a step load is higher than the response to a sinusoidal load.  
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Figure 6. Dynamic response of clamped circular plates for finite duration sinusoidal load 

 
In figure 7, three different types of loading are considered for simply supported square 

plate.  It is shown that the response to a step load is higher than the response to a sinusoidal load 
and triangular load.  
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Figure 7. Central deflection versus time for three different types of load (K=150) 
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6. CONCLUSIONS 
  
The present paper focuses on the application of DSC-HDQ coupled methodolgy. By using the 
DSC-HDQ coupled methods, geometrically non-linear dynamic analysis is studied for thin 
circular plates on Winkler foundation. Consequently, by comparing the computed results with 
those available in published works, the present analysis by the DSC-HDQ methodology is 
examined and a very good agreement is observed.  
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