
 
 

 380

                                    
Kısa Bildiri / Short Report 

STATIC ANALYSIS OF SHEAR DEFORMABLE RECTANGULAR PLATES 
ON WINKLER-PASTERNAK FOUNDATION  
 
 
Ömer CİVALEK*  
 
Akdeniz University, Faculty of Engineering, Civil Engineering Department Division of Mechanics, ANTALYA 
 
Geliş/Received: 09.07.2007   Kabul/Accepted: 07.02.2008 
 
 
ABSTRACT 
 
Static analysis of shear deformable plates resting on two-parameter foundations is presented by the method of 
discrete singular convolution (DSC). The influence of foundation parameters on the deflections of the plate 
has been investigated. Numerical studies are performed and the DSC results are compared well with other 
analytical solutions and some numerical results.  
Keywords: Thick plates, discrete singular convolution, elastic foundation. 
 
 
WINKLER-PASTERNAK ZEMİNE OTURAN KAYMA DEFORMASYONLU DİKDÖRTGEN 
PLAKLARIN STATİK HESABI 
 
ÖZET 
 
İki parametreli zemine oturan kayma deformasyonlu plakların statik analizi için ayrık tekil konvolüsyon 
yöntemi sunulmuştur. Zemin parametrelerinin deformasyon üzerine etkisi incelenmiştir. Sayısal uygulama 
yapılmış ve elde edilen sonuçlar diğer analitik ve bazı sayısal çözüm yöntemlerinin verdiği sonuçlar ile 
karşılaştırılmıştır. 
Anahtar Sözcükler: Kalın plak, ayrık tekil konvolüsyon, elastik zemin. 
 
 
1. INTRODUCTION 
 
Plates on elastic foundation have wide applications in pressure vessels technology such as 
petrochemical, marine and aerospace industry, civil, and mechanical engineering. Long list of 
references on dynamic and bending analysis of thin and thick plates on elastic foundation are 
given, for example, in References [1,2,10,11]. Some selected works in this research topic includes 
those of Liew et al. [3], Teo and Liew [4], Wang et al. [5], Kobayashi and Sonoda [6], Civalek 
[7,9], Daloğlu et al.[12], Ayvaz et al.[13], Omurtag and Kadıoğlu [14] and Kadıoğlu and Omurtag 
[15].  
 
2. DISCRETE SINGULAR CONVOLUTION (DSC) 
 
For brevity, consider a distribution, T and )(tη as an element of the space of the test function. A 
singular convolution can be defined by [17]. 
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where )( xtT − is a singular kernel. The DSC algorithm can be realized by using many 
approximation kernels. However, it was shown [18-21] that for many problems, the use of the 
regularized Shannon kernel (RSK) is very efficient. The RSK is given by [22] 
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where ∆=π/(N-1) is the grid spacing and N is the number of grid points. In the DSC method, the 
function f (x) and its derivatives with respect to the x coordinate at a grid point xi are 
approximated by a linear sum of discrete values f (xk) in a narrow bandwidth [x-xM, x+xM ]. This 
can be expressed as [23] 
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where superscript n denotes the nth-order derivative with respect to x. Detailed formulations for 
these differentiation coefficients can be found in references [24-26].  
 
3. FUNDAMENTAL FORMULATIONS 
 
The governing equations for bending of Mindlin plates on two-parameter elastic foundation can 
be given in the following dimensionless form as [3] 
 

,0
2

1
2

1 2

2

2
2

2

2

=Ψ−
∂
∂

+
∂∂
Ψ∂+

+
∂
Ψ∂−

+
∂
Ψ∂

X
YXX α

X
Wα

YX
βυ

Y
υβ

X
χ              (5) 

 

,0
2

)1(
2

)1( 2

2

2
2

2

2

=Ψ−
∂
∂

+
∂∂
Ψ∂+

+
∂
Ψ∂

+
∂
Ψ∂−

Y
XYY α

Y
Wα

YX
βυ

Y
β

X
υ χ              (6) 

 

.0)1( 2

2

2

2

=−+⎥⎦
⎤

⎢⎣
⎡

∂
Ψ∂

+
∂
Ψ∂

−⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+ W
α

K
Q

Y
β

XY
Wγβ

X
Wχ

α
G FYXf              (7) 

 

In the equations given above, following new parameters are used. 
 

axX /= ,  byY /= ,  hwW /= ,  ah /=χ , baβ /= , bhγ /= , xX ψ=Ψ  

2/)1(6 χκ υα −= , yY ψ=Ψ , χκGqQ /= , DkaK f /4= , ./2 DGaG Ff =             (8) 
 

The moment resultants can be given by [4] 
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According to the DSC method, the normalized governing equations (Eqs.5-7) can be 
discretized into the following form 
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Two types of boundary conditions, i.e., simply supported (S) and clamped (C) are taken 
into consideration. The normalized form of these boundary conditions can be given below: 
 
 

,0=W  ,0=ΨX   and  .0=ΨY              (15) 
 

• Simply supported (S) edge at  X=0, 1 
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• Simply supported (S) edge at  Y =0, 1 
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4. NUMERICAL EXAMPLES 
 
In the first test example, the central deflection of SSSS square plate under uniformly distributed 
load (h/a=0.05)  is taken into account. Results from Buczkowski and Torbacki [8] and 
Timoshenko and Woinowsky-Krieger [16] are used to check present formulation for the 
deflection of plates on elastic foundation. These results are listed in Table 1. It is seen that the 
present method yields accurate results. Table 2 shows the comparison of the central deflection and 
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bending moments of SSSS square plate under uniformly distributed load, with the solutions of 
Wang et al. [5] for different GF.  
 

Table 1. Comparison of the deflection W/ (qa4 /100D) of SSSS square plate under uniformly 
distributed load (h/a=0.05) 

 

 
K 
 

Analytical 
Solution 
Ref. 16 

Thick plate 
FEM 
Ref. 8 

Present 

0 0.40624 0.41197 0.40628 
1 0.40517 0.41088 0.40521 
3 0.33472 0.33855 0.33473 
5 0.15060 0.15114 0.15064 
10 0.01115 0.10960 0.01118 

 
Table 2. Central deflection and bending moments of SSSS square plate under uniformly 

distributed load (h/a=0.005;ν=0.25; K=200) 
 

 
M/ (qa2 /100) 

 
W/ (qa4 /100D) 

 
GF 

 
Ref. 5 Present Ref. 5 Present 

5 2.4179 2.4208 0.2264 0.2264 
10 - 1.9876 - 0.1886 
20 1.6129 1.6133 0.1568 0.1570 

 
All computations are made using 18 grid points in each direction. The results obtained 

by the proposed method for variation of central deflection with thickness to width ratio of CCCC 
plates under uniformly distributed load for different Winkler parameters (b/a=1;ν=0.3) are shown 
in Figure 1. The results are presented for three different Winkler parameters. It is shown that the 
increasing value of K always decreases the deflection. It is concluded that the w values increase as 
the h/a ratio increase. The parameter K of the Winkler foundation has been found to have 
significant influence on the static response of the Mindlin plates. 

The relationship between the deflections with h/a ratio for different value of Gf  is 
shown in Fig. 2 by setting b/a=1, K=200. It can be seen that, the displacement increases directly. 
It is also shown that the increasing value of Gf always decreases the deflection. Furthermore, the 
displacements decrease with increasing the shear modulus of foundation, Gf. Figure 3 describes 
the manner of variation of deflections with respect to shear modulus of foundation Gf for three 
different boundary conditions. Results given in this figure are obtained by setting b/a=1, h/a=0.2, 
K=1. It is shown in these figures that the deflections decrease with increasing shear modulus of 
foundation Gf.  Also, the SSSS plate has the highest bending moments, followed by SCSC and 
CCCC.  
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Figure 1. Variation of central deflection (qa4/104D) with thickness to width ratio of CCCC plates 
under uniformly distributed load for different Winkler parameters (b/a=1;ν=0.3) 
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Figure 2. Variation of deflection (qa4/100D) with thickness to width ratio of SSSS plates 
under uniformly distributed load for different Pasternak parameters 

(X=0.5; Y=0.5; b/a=1; K=200;ν=0.3) 
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Figure 3. Variation of deflection (qa4/104D) with Pasternak parameters under uniformly 
distributed load for different boundary conditions (X=0.5; Y=0.5; b/a=1; h/a=0.2; K=1;ν=0.3) 

 
5. CONCLUSIONS 
 
The method of discrete singular convolution for the solution of static analysis of Mindlin plates 
on Winkler-Pasternak foundations. The shear parameter Gf of the Pasternak foundation and 
stiffness parameter K of the Winkler foundation have been found to have a significant influence 
on the static response of the plates. Furthermore, the response to a simply supported plate is 
higher than the response to a clamped supported. The dimensionless deflection (W) values 
increase as the h/a ratio increase. In fact the deflection values (w) decrease.  
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