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ABSTRACT 
 
As most of the known diseases exhibit dysfunctional aspects in the signal transduction networks, there has 
been a great deal of enthusiasm to identify novel drug targets based on the knowledge of key signal 
transduction components and their links to diseases. In the present study, a computational framework was 
recruited for the reconstruction of protein-protein interaction networks of specific signaling mechanisms in 
Baker’s yeast. The objective was to analyze the interconnection between these signaling networks in order to 
identify the possible crosstalks between sphingolipid signaling and other signaling mechanisms. These 
networks are composed of the candidate proteins belonging to sphingolipid signaling, target of rapamycin 
(TOR) signaling, high osmolarity glycerol (HOG) signaling, pheromone response and calcium (Ca) mediated 
signaling in Saccharomyces cerevisiae. A detailed map including physical and functional connections that link 
the relevant signal transduction components to each other and to adjacent networks is developed. The 
proposed framework can effectively be used as a tool to give insight into the important and complicated 
network of signaling in higher eukaryotes. 
Keywords: Signal transduction networks, sphingolipid, TOR, calcium, HOG.  
 
MAYADA SİFİNGOLİPİD İLE DİĞER SİNYAL İLETİMİ MEKANİZMALARI ARASINDAKİ 
ETKİLEŞİMLERİN BELİRLENMESİ 
 
ÖZET 
 
Bilinen birçok hastalığın, sinyal ileti ağyapılarında işlev bozukluğundan kaynaklandığı bulgusuna dayanarak, 
anahtar sinyal ileti unsurları ve bunların hastalıklarla bağlantıları üstüne bilinenlerin baz alınması yoluyla yeni 
ilaç hedefleri saptanması son yıllarda çok ilgi çekmektedir. Bu çalışmada da, mayaya özgü sinyal ileti 
mekanizmalarının protein-protein etkileşim ağyapıları oluşturulması hesapsal bir çerçevede incelenmiştir. 
Amaç, mayadaki değişik sinyal ileti ağyapılarının birbirleriyle bağıntılarını inceleyerek, özellikle sifingolipid 
sinyal ileti mekanizması ile diğer sinyal iletimi mekanizmaları arasındaki olası etkileşimleri belirlemektir. Bu 
ağyapıları oluşturan aday proteinler mayadaki sifingolipid, Rapamisin hedefi (TOR), yüksek ozmolarite 
gliserol (HOG), feromon tepki ve kalsiyum ilintili sinyal ileti ağyapılarında görev almaktadırlar. İlgili sinyal 
ileti unsurlarını birbirlerine ve komşuağyapılarına birleştiren fiziksel ve işlevsel bağlantıları detaylı gösteren 
bir yolizi haritası hazırlanmıştır. Burada önerilen hesapsal yöntem, yüksek ökaryotlardaki önemli ve karmaşık 
sinyal ileti ağyapılarını incelemede de etkili olarak kullanılabilir. 
Anahtar Sözcükler: Sinyal ileti ağyapıları, sifingolipid, TOR, kalsiyum, HOG. 
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1. INTRODUCTION 
 
Signaling is the study of how cells communicate, and it impinges on all aspects of biology, from 
development to disease. Like all living organisms, yeast cells must continually sense their 
surrounding environment and make decisions on the basis of that information. As almost all 
known diseases exhibit dysfunctional aspects in these signaling networks, there has been a great 
deal of enthusiasm to identify novel drug targets based on the knowledge of key signal 
transduction components and their links to diseases. Understanding cellular signaling is therefore 
essential for gaining insight into the molecular mechanisms underlying the diseases as well as for 
the adaptation of living cells to changes in the environment. 

Various signaling pathways interact closely with one another and the final biological 
response due to a given perturbation is therefore shaped by the interactions between or among 
many different pathways. A growing body of experimental evidences (reviewed in [1]) confirms 
ubiquitous interconnections and interdependencies between the different components of these 
pathways. Signaling pathways are often branched in an intertwined fashion and are therefore 
integrated into complex signaling networks with many levels of interconnectivity.  

Sphingolipids are highly bioactive compounds that serve not only as components of the 
biological structures such as membranes and lipoproteins, but also as regulators of cell 
proliferation, differentiation, cell–cell and cell–matrix interactions, cell migration, intracellular 
and extracellular signaling, membrane tracking, autophagy, and cell death [2,3]. Sphingolipids are 
abundant components of the Saccharomyces cerevisiae plasma membrane, with smaller amounts 
found in other cellular membranes. Despite their abundance, functional roles in cellular processes 
have only begun to be elucidated in the past decade. The interest in sphingolipids has been 
sparked by the indications that they regulate signal transduction pathways in mammals [4]. 

The functions of sphingolipids include facilitating transport of glycosyl 
phosphatidylinositol-anchored proteins from the endoplasmic reticulum to the Golgi apparatus, 
being the lipid moiety in many glycosylphosphatidylinositol-anchored proteins, playing some role 
in regulating calcium homeostasis or being components in calcium-mediated signaling pathways, 
and regulating the cell cycle [5-7]. Recent data suggest that sphingolipids should communicate 
with many other signaling pathway components in yeast, including those of pheromone, calcium, 
glucose, HOG and TOR signaling pathways [5-7]. Therefore, there is a great need for system-
level analysis of interaction between sphingolipid metabolism and other cellular processes.  

In the last decade, parallel to the completion of genome sequence projects, high-
throughput functional genomics tools have been developed and protein-protein interaction 
databases [8-12] have expanded significantly. The Gene Ontology (GO) project was established 
to provide a common language to describe aspects of a protein represented by three categories, 
i.e. molecular function, biological process and cellular component, each one structured as a 
directed acyclic graph [13]. Now the challenge is to develop computational tools that allow 
system-level evaluation of the “omic” data with the objective of identifying the signal 
transduction pathways operating in the cell. Since the final biological response due to a given 
perturbation is shaped by the interactions between or among the relevant pathways, a 
reconstruction process related to signal transduction in living organisms would result in networks 
that are quite complex with many levels of interconnectivity indicating the interaction of several 
different signal transduction pathways. 

Previously [14], we hypothesized that a protein has a high probability of having 
characteristics similar to the proteins classified in a functional category if its GO annotations are 
similar to those already present in that particular category. The Selective Permissibility Algorithm 
(SPA) was developed to integrate GO annotations with protein-protein interaction data to 
reconstruct a protein interaction network that has the potential for predicting signal transduction 
pathways in yeast. The success of this SPA methodology was shown by the reconstruction of 
glucose sensing and signaling pathways in Saccharomyces cerevisiae [14].  
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In the present study, in order to identify the possible interconnections of sphingolipid 
metabolism and signaling with other signaling pathways, the Selective Permissibility Algorithm 
was recruited for the reconstruction of protein-protein interaction networks of (i) sphingolipid 
signaling, (ii) Target of Rapamycin (TOR) signaling, (iii) High Osmolarity Glycerol (HOG) 
signaling, (iv) pheromone response and (v) calcium (Ca) mediated signaling in Saccharomyces 
cerevisiae. The objective was to analyze the interconnections between these signaling networks in 
order to identify the possible crosstalks between sphingolipid signaling and other signaling 
mechanisms. A detailed map including physical and functional connections that link the 
sphingolipid signaling network to other relevant signal transduction components is developed. 
Essentially, this reconstructed scheme is expected to serve as a starting point for future 
experimental work. 
 
2. MATERIALS AND METHODS  
 
A systems biology approach for the reconstruction of signal transduction networks requires the 
integration of several types of biological data and the use of the numerous analyses techniques.  
 
2.1. Protein-Protein Interaction Data  
 
Three public databases, BioGRID, DIP and STRING [8,11,12] use the results of high-throughput 
experiments and also collect experimentally determined protein-protein interactions from the 
literature. In the present study, the databases of interacting protein pairs for yeast were assembled 
from these three public databases as available on February 9, 2006. The assembly consists of 
65,673 protein-protein interactions between 5,253 proteins.  
 
2.2. Gene Ontology Annotations  
 
Gene Ontology (GO) is a controlled vocabulary used to describe the biology of a gene product in 
any organism [13]. There are three independent sets of vocabularies, or ontologies, which 
describe the molecular function of a gene product, the biological process in which the gene 
product participates, and the cellular component where the gene product can be found. The 
ontology is represented as a directed acyclic graph (DAG), in which terms may have multiple 
parents and multiple relationships to their parents. In addition, each term inherits all the 
relationships of its parents. GO is a dynamic, evolving project of the Gene Ontology (GO) 
Consortium (www.geneontology.org).  
 
2.3. Yeast Databases 
 
Saccharomyces Genome Database, SGD, [10] is a daily-updated scientific database of the 
molecular biology and genetics of the yeast Saccharomyces cerevisiae. It includes all types of 
biological information, (such as systematic names, product descriptions, GO annotations, mutant 
phenotype, physical and genetic interactions, sequence information, literature summary) on 6609 
yeast ORFs and is achievable by internet (www.yeastgenome.org).  

The MIPS Comprehensive Yeast Genome Database [9], CYGD, aims to present 
information on the molecular structure and functional network of the budding yeast, 
Saccharomyces cerevisiae. It includes a Functional Catalog (MIPS-FunCat), in which manually-
annotated proteins are functionally classified into 17 specific categories.  
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2.4. Selective Permissibility Algorithm (SPA)  
 
Selective Permissibility Algorithm, SPA, [14] integrates protein-protein interaction data with ene 
Ontology (GO) annotations to reconstruct signaling networks composed of candidate proteins for 
signal transduction mechanisms in Saccharomyces cerevisiae. The algorithm has two distinctive 
elements, the input protein(s) and the selection criterion (Figure 1). The input to the algorithm is a 
set of proteins known to have a certain function in the signaling pathway to be reconstructed. In 
the first step, all interactions of the proteins were extracted from interactome data sources. In the 
next step, the relevance of these interacting proteins was tested through a selection criterion which 
was designed by employing GO Annotations. Hereby interacting proteins were either accepted or 
rejected (the procedure is explained below), and in the next step of the algorithm the accepted 
proteins were used as input proteins and the cycle was repeated. This cycle was continued until 
the whole interaction data source was scanned, i.e. no new interacting partners were identified.  
 

 
 

Figure 1. The geometrical representation of the selection step of SPA [14] 
 

The selection criterion of SPA is based on an Annotation Collection of proteins, which 
was collected from GO annotations used to describe proteins belonging to the “cellular 
communication and signal transduction mechanism” category in the MIPS Comprehensive Yeast 
Genome Database [9] in terms of component, function and process.  

A candidate protein was included into the network if all of the 3 GO annotations 
(component/function/process) of the protein are present in the Annotation Collection. It has a high 
probability of having characteristics similar to the proteins classified in “cellular communication 
and signal transduction mechanism” functional category in MIPS, and therefore, having a 
possible role in the signaling pathway to be reconstructed. In Figure 1, the Annotation Collection 
is represented as a 3-D rectangular subspace, where the coordinates are the GO annotations in 
terms of component, function and process, respectively. Any protein is described as a point in the 
3-D space, p(x,y,z). If the point p is inside the rectangular subspace (S), the corresponding protein 
is selected.  
 
2.5. Gene Ontology (GO) Mapping Analysis  
 
Gene Ontology mapping tool of Saccharomyces Genome Database [10], namely GO Term 
Finder, was used to analyze the GO annotations that are significantly common among products 
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encoded by a set of genes. GO Term Finder uses a hypergeometric distribution with multiple 
hypothesis correction (i.e., Bonferroni Correction) to calculate p-values: 
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where is Ø calculated as the number of genes annotated to a specific term divided by the total 
number of genes annotated to all terms, n is the number of genes in the investigated list, and x is 
the number of genes in the list annotated to the specific term. 
 
2.6. Cross-Talk And Functional Linkage Analysis 
 
To investigate possible cross-talks across the signaling pathways, we used the networks 
constructed specifically for each signaling pathway. The network proteins were analyzed for 
statistical enrichment of proteins from other signaling pathways by counting the proteins shared 
by two networks. A hyper-geometric test was used to estimate the significance of the counts:  
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where X is the size (i.e. number of proteins) of the query network, M is the size of the cross-talk 
partner network, N is the total proteins in the global network (i.e. genome), and m is the number 
of shared proteins or GO terms in two networks. This calculation is repeated for all pair-wise 
combinations of networks, and p-value of 10-4 is considered as the threshold for significance [14].  
 
2.7. Data Visualization Tool  
 
Osprey [15] is a free software platform for visualization of complex interaction networks. Osprey 
builds data-rich graphical representations from Gene Ontology annotated interaction data 
maintained by BioGrid.  
 
3. RESULTS AND DISCUSSION  
 
The analysis of the protein-protein interactions is very important for unraveling signal 
transduction pathways. With the accumulation of genome sequence information of several 
organisms, large-scale genomic and proteomic experimental techniques have generated enormous 
amounts of interactome data, provided valuable resources, and offered insights into the 
components of the signaling pathways and the molecular and cellular responses to cell signaling 
[16].  

The experimental evidences on functionality of sphingolipid molecules in regulating 
several molecular mechanisms in Saccharomyces cerevisiae indicated a need for the analysis of 
the interconnectivity of sphingolipid signaling with other signaling mechanisms. Therefore, in the 
present study, specific protein-protein interaction networks of Target of Rapamycin (TOR) 
signaling, High Osmolarity Glycerol (HOG) signaling, pheromone response signaling and 
calcium-mediated signaling are reconstructed together with the sphingolipid signaling in 
Saccharomyces cerevisiae.  
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3.1. Improvement of the Protein Interaction Data 
 
In principle, protein-protein interaction data can be directly employed to reconstruct signaling 
networks. However, the full potential of these data cannot be utilized for discovering signal 
ransduction networks for several reasons: (i) the incompleteness of the interactome data, (ii) low 
reliability of the protein-protein interaction data due to high noise levels. Despite these potential 
problems, protein-protein interaction networks have been proved to be extremely useful for 
protein function prediction and characterization [17-20].  

A potential difficulty with the available protein-protein interaction data obtained mostly 
by the high-throughput screens is the prevalence of false negatives –i.e. the interactions that are 
not detected but do occur in the cell [21-22]. 16-20% overlap of the interactions was reported by 
using different high-throughput datasets [23]. These results indicated that the individual datasets 
cover only a small percentage of the potential interactions. The low value calculated for the 
overlap in the datasets indicates the necessity for assembling the data. Therefore, in the present 
work, the interactome data were assembled from three publicly available large databases.  

Another potential difficulty with the available protein-protein interaction data is the 
prevalence of false positives –i.e. the interactions that are seen in an experiment but never occur 
in the cell [21-23]. Several attempts have been made to assess and improve the quality of the data 
by integrating the different biological features, such as gene expression profiles and Gene 
Ontology annotations [24-27]. Lu and coworkers (2005) showed that any delicate dependencies 
between these features can confound the strength of the prediction in integrated frameworks, 
although there may not be any appreciable statistical dependence between the possible pairs of 
these features. The interactome assembly constructed in the present study was analyzed using the 
protein co-localization data [28] in yeast. Two interacting proteins are hypothesized to be in the 
same cellular location, at least at the time of interaction. Therefore, proteins that do not exist in 
the same cellular compartment are assumed to be non-interacting and labeled as false-positive. As 
a result of this analysis, a false-positive interaction data set consisting of a total of 2994 
interactions was identified and removed from the protein-protein interaction assembly. 
 
3.2. Reconstruction of Yeast Signaling Networks  
 
Literature data indicate that sphingolipid pathway communicates with many signaling pathways 
in yeast, including pheromone, calcium, glucose, HOG and TOR signaling pathways. It is stated 
that the inhibition of pheromone signaling due to the depletion of ergosterol is somehow linked to 
the sphingolipid metabolites [29]. It is also argued that sphingolipids take role in osmostress 
responses in yeast. Non-specific osmostress is exerted by moderate concentrations of various 
solutes such as NaCl, KCl or sorbitol and induces the high-osmolarity glycerol (HOG) pathway 
which rapidly raises the intracellular glycerol concentration up to molar levels [30]. It is reported 
that the homologue of the neutral sphingomyelinase in the mammalian sphingolipid metabolism, 
Isc1p, serves as a stress signalling mediator and ISC1 is required for the development of yeast 
halotolerance against Na+ and Li+ ions, again indicating a possible crosstalk between 
sphingolipid metabolism and HOG signaling pathway in yeast [30]. Furthermore, it is 
demonstrated that yeast cells deficient in TORC2 activity are impaired for de novo ceramide 
biosynthesis both in vivo and in vitro [31], and TORC2 regulates this step in part by activating the 
AGC kinase Ypk2 [32], this step is antagonized by the Ca2+/calmodulindependent phosphatase 
calcineurin. Hence, sphingolipid metabolism interacts additionally with TOR and calcium 
signaling pathways. Another finding supporting that is the linkage of calcium signaling pathway 
to the sphingolipid metabolism in mammalian cells [33]. The possible crosstalks between these 
mentioned signaling pathways and sphingolipid metabolism are also summarized in recent 
reviews [2,3]. These experimental evidences on functionality of sphingolipid molecules in 
regulating several molecular mechanisms in Saccharomyces cerevisiae have indicated possible 
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interconnections of sphingolipid signaling with Target of Rapamycin (TOR) signaling, High 
Osmolarity Glycerol (HOG) signaling, pheromone response signaling and calcium (Ca) signaling 
in Saccharomyces cerevisiae.  

 
Table 1. Signaling-annotated proteins used to built the Annotation Collection tables                    

of signaling pathways 
 

Sphingolipid TOR HOG Pheromone Calcium 
Pkh1 Tor1 Sln1 Ste4 Cch1 
Pkh2 Tor2 Ypd1 Ste2 Cdc31 
Pil1 Kog2 Ssk1 Cdc24 Cmd1 
Lsp1 Lst8 Ssk2 Far1 Cmk1 
Pkc1 Avo1 Ssk22 Fus3 Cmk2 
Ypk1 Avo2 Cdc42 Bem1 Cmp2 
Ypk2 Sap190 Ste11 Cdc42 Cna1 
Sch9 Bit61 Ste20 Ste5 Cnb1 

 Slm1 Pbs2 Gpa1 Crz1 
 Slm2 Hog1 Ste7 Csg2 
 Sit4 Ptc1 Dig1 Frq1 
 Tsc11 Ptp2 Dig2 Frt1 
 Tco89 Ptp3 Ste11 Frt2 
  Rck1 Ste18 Kex2 
   Ste20 Lcb4 
   Cdc28 Lcb5 
   Ste12 Mid1 
   Ste50 Plc1 
   Kar4 Pmc1 
   Prm7 Pmr1 
   Prr2 Rcn1 
   Plp1 Rsf1 
   Far7 Tcb1 

 
In the present work, for each signaling mechanism, the literature as well as the MIPS 

Functional Catalogue was scanned for signaling annotated proteins to reconstruct the Annotation 
Collection table. These proteins (Table 1) also form the initial protein set used as the starting 
point of the SPA algorithm. The GO terms of these proteins were extracted from the gene 
ontology database and the Annotation Collection tables were built. 
 

Table 2. Size and average connectivity of reconstructed signaling networks 
 

 Sphingolipid TOR HOG Pheromone Calcium Overall 
# of proteins (N) 181 398 332 102 319 1016 
# of interactions 

(L) 918 1972 1685 333 1576 5298 

Average 
connectivity 

2L 
(⎯⎯) 

N 

10.14 9.91 10.15 6.54 9.88 10.43 
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The execution of the SPA algorithm resulted in protein-protein interaction networks 
with different sizes for each signaling mechanism (Table 2). The sizes of the reconstructed 
networks differ from 102 to 398. Almost all of the reconstructed networks have average 
connectivity around 10, which indicates that a protein has 10 neighbors on the average.  

A detailed map including physical and functional connections that link the sphingolipid  
signaling network to other relevant signal transduction components is then developed using 
Osprey (Figure 2). The overall network consists of 1016 proteins. Several proteins were shared 
between signaling networks. Two proteins, Cdc28 which is the catalytic subunit of the main cell 
cycle cyclin-dependent kinase, and Fus3, a mitogen-activated serine/threonine protein kinase 
involved in mating, were present in all five networks. Similarly, a total number of 60 proteins (6% 
of the network) were shared by at least three networks (shown in the middle of the figure 2 by 
yellow, red and blue colors). On the other hand, 779 proteins (77% of the network) were not 
shared; they are concluded to be mechanism-originated. 
 

 
 

Figure 2. The reconstructed map including physical and functional connections that link the  
sphingolipid signaling to other relevant signal transduction pathways (Green: proteins shared by  
two pathways, yellow: protein shared by three pathways, red: proteins shared by four pathways,  

blue: proteins shared by all pathways) 
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3.3. Interconnectivity (Cross-talk) Between Yeast Signaling Networks  
 
The presence of the common proteins between the reconstructed networks of signaling pathways 
was expected and that indicated the presence of a strong cross-talk. In order to elaborate the 
possible cross-talks among the signaling pathways, the networks reconstructed specifically for 
each signaling pathway were then quantitatively analyzed for statistical enrichment of proteins 
from other signaling pathways by counting the proteins shared by two networks. We have applied 
this approach to map possible cross-talk relations among the set of signaling pathways. The 
number of proteins shared between the network pairs and the corresponding p-values indicating 
their statistical significance were given in Table 3. 

The comparative analysis of the reconstructed networks predicted several expected and 
ovel cross-talk relationships between the considered pathways that are supported by the 
experimental evidence in literature. It can seen from Table 3 that sphingolipid (SL) signaling is 
strongly interconnected with target of Rapamycin (TOR), high osmolarity glycerol (HOG) and 
calcium signaling pathways. The lowest p-value (1.51 x 10-18) is obtained for the interactions 
between SL and TOR pathways indicating a strong crosstalk. Additionally, calcium signaling and 
high osmolarity glycerol (HOG) signaling pathways also show a good correlation with a low p-
value (5.30 x 10-8) compared to other interactions. Furthermore, high osmolarity signaling and 
mating pheromone response networks result in a noticeable crosstalk (p-value of 7.43×10-5).  
 

Table 3. Cross-talk analysis across signaling pathways. The rows of the table correspond to the 
query network and the columns correspond to the potential cross-talk partner network. The upper- 
triangular part indicates the number of proteins shared between the corresponding network pairs,  
whereas the lower triangular part gives the p-values indicating the statistical significance of these  
counts. Significant results are indicated as bold and italic. 
 

 Size Sphingolipid TOR HOG Pheromone Calcium 
Sphingolipid 181 - 82 52 4 40 

TOR 398 1.51×10-18 - 70 9 68 
HOG 332 2.29×10-7 0.131 - 12 60 

Pheromone 102 0.219 1.16×10-4 7.43×10-5 - 5 
Calcium 319 2.11×10-5 0.099 5.30× 10-8 0.013 - 

 
Sphingolipids in yeast have been shown to mediate significant and diverse biological 

responses. The erectors of ceramide production include Fas ligands, ultraviolet light, heat shock, 
DNA damage, chemotherapeutic drugs and many other agents. The activated signal transduction 
pathways control a variety of cellular processes including the cell cycle, apoptosis and 
senescence, immune responses, and cell-cell interactions. Ceramide is one of many intermediates 
in sphingolipid metabolism and it seemed likely that other sphingolipid metabolites might also 
function as signaling molecules. Subsequently, it has been shown that sphingosine and 
sphingosine-1-phosphate, sphingosylphosphorylcholine, and possibly di- and tri-
Nmethylsphingosine are signaling molecules that regulate numerous cellular processes in 
mammalian cells.  

The target of Rapamycin (TOR) signaling pathway is an important mechanism by 
which cell growth is regulated by nutrient availability in eukaryotes. Similarly, sphingolipids are 
essential for yeast cell growth and survival based on the observation that the inactivation of the 
biosynthesis of sphingolipids leads to lethality of yeast cells [31]. Yeast cells with the deletion of 
IPC synthase fail to synthesize complex sphingolipids and die [3]. These studies suggest that 
complex sphingolipids are essential for yeast survival and growth. The significant 
interconnectivity between TOR signaling and sphingolipid signaling (p-value of 1.51×10-18) 
should be due to their regulatory function on cell growth and needs further experimentation.  
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Recent data suggest that sphingolipids acting as signaling molecules or secondary 
messengers are playing a role during the response to heat stress [5]. The protective role of 
sphingolipids in cell growth and survival under heat stress conditions was first speculated based 
on the observation that a yeast mutant SLC-1 lacking the ability to synthesize sphingolipids was 
unable to grow at an elevated temperature (>37 °C). Although ceramides, sphingoid bases, and 
their phosphates are increased in response to heat stress and are metabolically interchangeable in 
yeast cells, it is still unknown whether one or all of these lipids has a protective effect against heat 
stress and heat shock [6]. It may be possible to address this issue by constructing yeast mutants 
that generate one but not the other lipids. On the other hand, the exact pathways for the generation 
of sphingoid bases, ceramide, and sphingoid base phosphates upon heat stress have not been 
defined yet. It was initially thought that ceramides, sphingoid bases and their phosphates were 
generated only de novo in response to heat stress. However, the identification of the enzymes 
responsible for the breakdown of complex sphingolipids and ceramides raises the possibility that 
ceramides, sphingoid bases and their phosphates can also be generated from the breakdown of 
sphingolipids. However, the increased ceramide concentration in response to the heat stress 
appears to arise from de novo biosynthesis because australifungin, the specific inhibitor for 
ceramide synthase, is able to block most of the increase in ceramide induced by heat stress [5,6]. 
These evidences lead the researchers to hypothesise on the possible roles of sphingolipids during 
osmotic stress and low pH stress [29,30]. In the present work, the strong interconnectivity 
between the reconstructed networks of SL and HOG (p-value of 2.29×10-7) also supports this 
hypothesis, but needs validation with further experimentation.  
The crosstalk between sphingolipid signaling and calcium-mediated signaling ( p-value 2.11x10-5) 
can be explained by the functional roles of sphingolipids in the regulation of calcium homeostasis. 
Moreover, sphingolipid metabolites have been recognized as capable of also mobilizing 
intracellular calcium. In the mammalian cells, the action of two sphingolipid metabolites, S1P and 
sphingosylphosphocholine (SPC), is of particular interest since they induce calcium ion release 
not only via inositol trisfosfate (IP3), generated by the activation of specific extracellular 
receptors, but also by a direct action on intracellular Ca ion stores [32,33]. 

Another strong crosstalk (p-value of 7.43×10-5) is observed between the networks 
reconstructed for two MAPK pathways, namely high osmolarity signaling and mating pheromone 
response (Table 3), since a significant number of proteins were shared between these networks. 
The high osmolarity signaling pathway operates through Hog1, which plays a key role in global 
gene expression. In Saccharomyces cerevisiae, two trans-membrane proteins (Sln1 and Sho1) act 
as receptors, and five transcription factors (Hot1, Mcm1, Msn2, Msn4 and Sko1) are controlled 
by Hog1 [34]. These transcription factors regulate numerous genes that are involved mainly in 
carbohydrate metabolism, general stress protection, protein production and signal transduction. 
Mating pheromone response pathway is involved in mating of haploid yeast cells [35]. The 
mating response to generate diploids is initiated by the binding of .-and A-pheromones to G-
protein-coupled receptors Ste2 and Ste3, respectively [35] and results in the activation of two 
transcription factors, Fus1 and Far1, which have regulatory roles in blocking cell cycle 
progression. A three-component cascade was reported to be conserved in these two signaling 
pathways from yeast to humans [34,35]. The cross-talk between MAPK pathways is attributed to 
the basic assembly of these cascades (MAPKKK→ MAPKK→ MAPK) in the organization of 
these pathways. The upstream elements of these cascades, Ste11 and Ste7, are common in all 
MAPK pathways. Moreover, the possible cross-talk between the high osmolarity signaling (HOG) 
pathway and the mating pheromone response pathway can be explained by the role of high 
osmolarity signaling in repression of the mating pheromone response pathway. It has been 
reported that the HOG pathway kinases are possibly controlling the activity of Fus3 protein 
kinase of the mating pheromone response pathway. Inactivating mutations in the HOG pathway 
kinases cause an increase in phosphotyrosine content of Fus3 protein and expression of 
pheromone-response genes, and increased sensitivity to growth arrest by pheromone [35].  
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4. CONCLUSIONS 
 
A detailed map including physical and functional connections that link the sphingolipid 
metabolism and signaling to other relevant signal transduction networks is developed using 
Osprey software. These reconstructions form a first draft of these signaling networks operating in 
the yeast cell and can be used as a starting point for designing further experimental and 
computational studies to (i) identify the unknown elements of the signaling pathways, (ii) 
understand the functional linkages within the signaling network of yeast, and (iii) decipher the 
general organizational principles such as pathway crosstalk. The proposed framework can 
effectively be used as a tool to give insight into the important and complicated network of 
signaling in higher eukaryotes.  
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