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Abstract
Let A € C™*" be normal with eigenvalues A1, ..., A\, andlet t1,...,t, €
C. It is well-known that

t1A et b =
?é%’j‘lw(l)"‘ + ()]

max {]tlu’{Aul + -+ tyu Auy| ‘ {ug,...,u,} C, (C"}.
Here S,, denotes the symmetric group of order n, and C, means “is an

orthonormal subset of ...”. If A is Hermitian and Ay > --- > A,, and
if t1,...,t, € R satisfy t1 > --- > t,, then

AL+ Ay =
max {tlu“{Aul + -+ tyur Auy, | {ug,...,u,} G, (C"}
and
tnA1 + -+t =
min {tlu’fAul + ot tpun Auy, | {ug, .. un )t Co (C"}.
We present bounds for the left-hand sides of all these equations by
suitable choices of uy,..., u,.
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1 Introduction

Let A = (a;;) € C™™ have eigenvalues Aq,...,\,, ordered Ay > --- > A, if
they are real. We use this notation throughout and assume that n > 2. We also
let t1,...,t, throughout denote given complex numbers, ordered t; > --- > ¢,
if they are real.

If A is normal, then

max ‘tl)\w(l) + -+ tnkﬂ(nﬂ =

WES'!L

max {\tlu’{Aul + ot un A, | {ug, . u) G C"} (1)

(Li, Tam and Tsing [5, Theorem 4.1]). Here S,, denotes the symmetric group
of order n, and C, means “is an orthonormal subset of ...”. Previously,
Mirsky [9, Theorem 6] proved (1) assuming that the ¢;’s are real. Putting

tv=1,t,=---=1t,.1=0,t, =—1, he obtained

max |\ — \j| = max{|u*Au —v*Av| [ {u,v} C, C"}. (2)

1<i,j<n

Johnson, Kumar and Wolkowicz [4] found lower bounds for max; ; |\; — ;| by
choosing u and v suitably. The present authors [8, Theorem 1] proved that
also

max |\ — A = max{|u*Au —v'AV| | u,v eC |u = |v] = 1}, (3)

1<i,j<n

where ||.|| denotes the Euclidean norm. Hence they found lower bounds for
max; ; |[A; — A;|. We will in Section 2 continue this study by presenting lower
bounds for the left-hand side of (1) where certain ¢;’s are put zero, by suitable
choices of uy, ..., u,.

Assume now that the ¢;’s are real. Then (1) strengthens into
co{tidzq) + T tadem) | T € S} =
{tlu’{Aul bt A, | {u,. . w) cn} (4)

(Marcus, Moyls and Filippenko [6, Theorem 1]). Here co denotes the convex
hull. If A is Hermitian, then the set (4) is a line segment in the real axis.
Since its left end point is t,A\; + - - - + t1\,, and right {70 + - -+ t, A\, (e.g., [1,
Theorem 368]), we have

tiAL + -+t A\, = max {tlu’{Aul + - FtuwAu, | {uwy, .. w0, G, (C”}, (5)

toA1 + - -+t A\, = min {tlu’{Aul + -+t Au, | {uy, ... u,} C, C"}. (6)
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Let 1 <k <n. Putting ty = --- =t = 1, t.1 = --- = t, = 0 gives the
well-known characterizations

M+t A= max{u”{Aul + -+ uAu | {ug, .. u b G, C"}, (7)
Akl + -+ Ay = min {u’{Aul + ot upAug | {uy, .., w ) G C"} (8)
(e.g. [2, Corollary 4.3.18]). We will in Section 3 present lower bounds for the

left-hand side of (5) and upper bounds for that of (6) when certain t;’s are
zero, by suitable choices of u;’s.

We will complete our paper with examples in Section 4 and computer ex-
periments in Section 5.

2  Studying maxcg, [ti A1)+ -+t Arm)|, A nor-
mal

Throughout this section, we assume that A € C™*" is normal and r, s € C.

2.1 Thecaset3;=---=t,=0

Choosing in (1) t; =7, to = s, t3 =--- =1, = 0, we have
 max [T Ai + sA\;| = max{|ru*Au +sviAv| | {u,v} C, (C"}. 9)
ik

Let su A denote the sum of the entries of A, and denote a; = ay; (i =1,...,n).

We generalize [8, Theorem 5] to

r s
. | > _ 2l Ca —a ) >
11£r;3p£<ﬂ|r)\l+8)\y|_11§ri13)§<n nsuA+2(a2+a] a;; — aj;)| >
i#] i#]
1D —
)wsuAjL i trA‘. (10)
n(n —1) n—1

The proof is a straightforward modification of that of [8, Theorem 5] but
we present it for completeness. For ¢ = 1,...,n, let e; be the i’th standard
basis vector of C", and let e be the vector of ones. In (9), set u = ﬁe and

V:%(ei—ej) where 4,7 =1,...,n, 7% j. Then

ru*Au+ sviAv = TsuA + g(ai +a; — aij — aj),
n
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and the first inequality of (10) follows. We underestimate its right-hand side.
If w,z,...,2, € C, then clearly

w—i—u < max |w + z].

p 1<i<p

Let w = Zsu A and let the z’s be the n(n — 1) numbers

Zij = g(az —+ CLj — CLZ'j — CLjZ‘>.

Then
12?;(” EsuA+ (a; +a; —a;; —aj)| >
i#£]
’ZSU.A—I— S iamLaj—aw aji|
n nn—1) 4 2 N
2,7=1
i#]j
ZSuA—l— S iai—i-aj—aij—aji o
n nn—1) £ 2 B
i,7=1
r s (n—1)r—s s
)—suA%—i(ntrA—suA)):’—suA+ trA),
n n(n—1) n(n—1) n—1

which completes the proof.

Forr=1,s=—-1(orr=—1,s=1),

n

A—trA 1
max |\, — \;| > [su Al _ ‘Zam’

1<i,j<n n—1 T n—1

, (11)

i,j=1

repeating [8, Theorem 5] (and its special case [4, Theorem 2.1]). Forr = s =1,

-2 1
max |\, + \j| > TS A+ tr Al;
1<i,j<n n(n —1) n—1
it
forr=1,s=0,
A
max || > [suA]
1<i<n n

(Parker [10, Theorem 3]); and for r =0, s = 1,

Intr A —suA|
max |\;| > :
1<j<n n(n —1)
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2.2 Thecaset, 1=---=t,=0

Let us define the following notations and use them throughout: [n] = {1,...,n},
e; = ) ;€ where ) # I C [n], A; is the principal submatrix of A with in-
dices in I, and |/| is the number of elements of .

Johnson, Kumar and Wolkowicz [4, Theorem 2.2(i)] proved that

—suA;| > max la; —aj|.  (12)

1
>
max |\, — A max |—suAj;— 7] Jnax

1<i,5<n 0#£I,JC[n] ‘]|
INJ=0

Also sets with I NJ # () can be included, see [8, Theorem 8§].

We generalize (12). Let 1 < k < n. Throughout denote N' = {{I,... [,} |
1<p<mnandI,...,I, are nonempty disjoint subsets of [n]}. We claim that

t
ti A co A, A A 13
gl + o ol 2 s [ b el 09
In particular,
Hé%x [t1 A+ 1+ + tk)\w(k)| > IIé%X |t1aﬂ(1) + -+ tkaw(k)|. (14)
To prove (13), we apply (1) with ¢4,y = -+ =t, =0, {I1,... I} € N, set
1 1
u = ——eq, ..., 0 = ————ey,, (15)
V4] VI "
and take the relevant maximum. Restricting |[1]| = -+ = || = 1 implies (14).
Choosing t; =1, to = —1, t3 = - -+ =t = 0 repeats (12). Choosing t; = 1,
ty =--- =1, =0, we obtain
1
max |\;| > max — [suA;| > max |az|
1<i<n 0£1C[n) |1 | <
(Parker [10, Theorem 3]). Finally, choose t; =+ - =ty =1, tpy1 =---=t, =

0 and let Kk =1,...,n— 1. Then, by (14),

max |\;| > max la;,

1<i<n
max |ANi + A >  max |a2+aj\
1<4,5< 2y
i#] isﬁj

max [Ny, +--+ N, | > max  a, +--+ai, |
1<i,.in—1<n 1<ip,..in-1<n

il#“‘#infl il#"séinfl
(Here iy # -+« # 1,1 means that iy,...,7,_; are all inequal.) Together with
A+ -+, = a1+ -+a,, this is a reminiscent of the fact that the eigenvalues
of a Hermitian matrix majorize its diagonal entries.
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3 Studying t;\ + -+t A, A Hermitian

Throughout this section, A € C*"*" is Hermitian and the ¢;’s are real. Let us
first note that setting £ = n in (7) and (8) repeats the elementary fact

trA =ujAu; +---+u,Au,
for all {uy,...,u,} C, C".
3.1 Thecasest3=---=t,=0and ty=---=1%,_1=0
Choosing t, =1, ty =---=1t,_1 =0, t, = —1 in (5) (or applying (2)) yields
A1 — A, = max {u*Au —V'Av | {u,v} C, C"},
while, by (3),
A= A, = max{u*Au VAV | u,v e C, |[ul = |v] = 1}. (16)

More generally, let r,s,t € R satisfy » > s > 0 and t > 0. We apply (5)
and (6) and proceed as in Section 2.1. Then (t; =7, ty =s,t3=---=1t, =0)

rA1 + sAy = max {ru*Au + sviAv | {u,v} C, (C”},

S$Ap—_1 + T\, = min {ru*Au + sv*Av | {u,v} C, (C"},

and (t1 =rlo=-=t,1=0, tn:_t)
rA; — t\, = max {ru*Au —tv*Av | {u,v} C, (C"}, (17)
—tA + 7\, = min {ru*Au —tv*Av | {u,v} C, (Cn}. (18)

Take u and v as in the proof of (10). Then

PA 4 shy > —suA + s max (a,-+aj — %aij) >
n 1<i,j<n
i#]
(n—1r—s s
——————suA tr A 19
n(n —1) ot +n_1r ) (19)
r . CLZ'"—CLJ'
SAp_1+ 1A, < —suA + s min ( —§Raij> <
n 1<i,j<n
i#]
— 1)y —
(n—1)r S A4S A, (20)

n(n —1) n—1
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rA —t\, > —suA—t min (ai ta §Raij> >
1<,5<n
]
-1 t t
n(n—1) n—1
—tA 1A, < —suA—t max (ai+aj —§Ra,~j> <
1<,5<n
i#]
-1 t
wsnA — tr A. (22)
n(n —1) n—1

Here R denotes the real part.
For r =t = 1, the second bounds (21) and (22) imply

n

suA —tr A 1
AL — Ay > =
! - n—1 n—1 Z £
’lJ:l Z,]:]_
i#] 1<J

—A1 + A, < thesame expression,

and so
|suA tr A| 1 2 =
)\1 )\ n—1 ‘Z; :—n—l}iglmaij" (23)
7] i<j
compatibly with (11). The first bounds (21) and (22) improve (23) to
AL — Ay >
max{su — min (a 9 —§Raij), i max (a 9 —%aij)}.(%l)
n 1<i,5<n 1<i,j<n
i#] i#]
3.2 Thecasesty,1=---=t,=0and t, 1=---=t, ;=0
Let 1 <k <n. Applying (5) and (6) with ¢4, = --- = t, = 0 and proceeding

as in the proof of (13) yields

11
tid 4 -+t > max <|[ | suAp +--- suA1k> (25)
1

{I I JeN |lk|

t1 tr
Bd et + -+ tdy < ( A A) 2
k k+1+ + 1t ~ {11,.1.1./71};1}6/\[ |Il|su 11 |Ik‘su I ( )

Let ap) > - -+ > apy be the ordered diagonal entries of A. Restricting |I;| =
= |I;| = 1, we have
AL+ A 2> tiap) + -+ trapy,
tedn—kr1 + -+ Ay S gy + 0+ Ay,
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and in particular

)\1—'—-.-—'—)\k2a[1]+...+a[k]7 (27>
A1 o+ Xy S k1) + 0 F Qp)-

Inequalities (27) where k = 1,...,n — 1, together with A\; +--- 4+ A\, = a1 +
-+ 4 ay,, tell the well-known fact (e.g., [2, Theorem 4.3.26], [7, Section 9.B.1])
that the vector (A1,...,\,) majorizes the vector (ai,...,a,).

Setting k =t; = 1 in (25) and (26) gives the well-known inequalities

1
A1 > max —suAj > ayp, An < min —suAjr < apy.
0+1Cn] |1 | 0£1Cn] | 1|
fk+l<nandt; > - -2t >20=tpp1 ==ty > —tyyp1 > >

—t,, then, by (5) and (6),
A+ A — G 1 A1 — = T A =
max {tlu’{Aul + - tugAu — tauy, Ay — o —

tyu Au, } {ug, ..., v,y yiq,. .., 0} G, (C"} (28)

and
_tn)\l - tn—l-‘rl)\l + tk)\n—k—i-l + -+ tl)\n -
min {tlu’fAul + - tu A — oy, Ay gy — o —
tour Au, ‘ {ug, ..., up,uy yq1,...,u,} G, C"}. (29)
The case k = [ = 1 repeats (17) and (18).
Let {I1,..., I, Ln_111,- .-, I,} € N. We choose
1 1

= ——€r,,..., U = ————e€y

1 1

u,_ = ——— € o, Uy =
O Vel T VL

Applying (28) and taking the relevant maximum yields

u;

e, .

LA+ A — i A — - — Ay 2>
t ty
max —suAjp +---+ —suA; —
{Ilv"'vlkvjnflﬁ’l7"'7I7L}EN <‘]1‘ h |[k‘ Ik
tn—l-l—l tn
SUA; ., — o — su A1n>. 30
] e 1.] (30)
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Hence, restricting |I1| = -+ = |Ix| = |Ln—141| = - - = || =1,
AL+ A — Tt A — o — A 2>
tiap) + -+ teap) — thlp_i41) — = tn—i41Qn)-

In particular,

1 1
A= A, > ( A A>> —
! ongem \[I]° LT ) = A T A

InJ=0

but (16) (or [8, Theorem 8(i)]) gives stronger

1 1
A=A > (suAr = suAy) = ay - a. 1
1 (})#Iln?g |I|su I |J|su J) = ap — ap (31)

Similarly, by (29),

_tn)\l - tn—l-‘rl)\l + tk)\n—k—i-l +---+ tl)\n S
t1 tr
min —suAjp +---+ —suAj; —
{11, 7Ik7[n I4+15-- ,In}EN (|Il| Il |Ik| Ik

tn—l+1 t”
SU.A[WW —-~-——suA1n>, 32
TR R TA (32)

and, restricting as above,
_tn)\l - tn—l-‘rl)\l + tk)\n—k—i-l + -+ tl)\n S
tkap) + -+ -+ tiag) — ta—1410n—141] — - - — tnQ[p)-

3.3 Restricting |[;| == [[;| =2
Generalizing (15), set

1 i0; 1 i0;
u; = eie;, ..., u; = eie;,
varst ; varey ,esz
where the 0;’s are arbitrary real numbers. To maximize and minimize ujAuy, ..., u;Au
over the 6;’s is difficult in general but easy if |I;| =+ = |Ix| = 2.
Under this assumption, let 1 <i,5 <n, i # j, u;;(0,¢) = \/—(e e; + e%e;)
and a;; = |a;;|e'*. The maximum of

CLZ'—FCLj

u;;Auy; = + R Day;) (33)

is
a; + aj

7 + |ai),
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attained for
uij(O, —Oéij) = Vij-

The minimum of (33) is

ai+aj

5 |a],
attained for

uij(O, —Oéij + 71') = W,’j.
Now let 1 < k < B #y > oo >t >0 =ty = - = t,, 1 <

o 1oyl i S0 00 F 1 F o F e F gk I = {0t I = Lk k)
By (5) and (6),

bid 4 lede = vy AV £ vy AV, =

1171 Uk
a;, + a; a;, + a;
b=t e e g | e e
and
tk)\n—k—l-l + 4 t1>\n S tIW;leWiljl + 4 tkW:kgkAka =
a;y, + a; a;,, + a;
t— e S = hang | = elag, -
2 2
Furthermore,
B+ B >
a;y, + a; a;, + a;
i#”,;gﬁ( 1 (S dlaigl)  (34)
NFFik
and
tk)\n—k+1 + - tl)\n <
a;, + a; a;, + a;
mn tu_'_..._i_tu_t al _..._t al) 35
i#,_;w( 1 e tlai, | elaigl). (35)
NFFik
Ifnisevenand t; = - =tn =1,tny =--- =1, =0, then (34) and (35)
simplify into
tr A
Attt An > 2 + il#@i‘é#(mqu +oee Tt |a7«%]% ), (36)
1A
tr A
n e < o - .
)‘54—1 + + A < 9 i1¢@2§%#(|a11]1| + + |al%Jg |) (37)

JieAi
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If nisodd and t; = "':tnTJrl = ].,tnT+3 =...-=1t, =0, then choose Iy, ... [,
as above and let Inp1 be the remaining {i}. We have

* * * _
Vz’1j1Avi1j1 +oeet Vin-1in-1 Avinfl Jn-1 + eInTH Ae[ﬁ;_l -

2 2
1 1 1 1 —
3% T gl T F iy T 50 T |@iju| + -+ |az'nT71jnT71| T iy =

tr A 1
T + ‘ai1j1| +eeet |a7:n71jn71 ‘ + Qi1
o o
and so
tr A
)\1 + -+ )\nTl Z T -+ i17é~rr7t%f_§r_17é(‘ailjl| + -+ |a215_1j15_1‘ + %ai%_l), (38)
NFFEIn—1
nl
tr A 1
dop ot S T g el B gans [ g0k ). (39
J1FFIn—1
nol

By (36) and (37),
Ot 0g) = O 0o 0 2 2, g (ol 4+ oy )
Ay
if n is even. By (38) and (39),
At Aat) = (Aas + 4+ X)) 2

max  [2(|ag |+ -+ |az‘15_1j15_1 )+ ai,., ]

i17é~~~;£z'nT+1;£ =
NF - Fin—
v

if n is odd.

To study analogously the latter part of Section 3.2, let n > 4, k[ > 1,
k<5, t12 24, 202> ~tpy1 > 2> ~lpqp, 10 F J1 F 0 F bkl F Jht s
Iy ={iv, g1}y o It = {ik41, Jr}- Then, by (5),

B+ A — T A — = T A >
tlv;-klleviljl 4+ tkvjkjkAvik]k
tk+1wz<k+1jk+1AWik+1jk+1 - tk"‘lw;'kkuijAWikijH'
Consequently,
LA+ Al =t A — o — T Ay 2
@iy + Ay Qjy, + gy, Qi yq + Aoy
max th—— 4+ F i ——= — gy —
i1 F e Fip i F < ! 2 b 2 ko 2
J1# Tkt

a;, ., +a;,
—tk+lk+lfm +tilaig |+ + tk+l|az’k+u‘k+l|) (40)
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and
~lppi M — = e N T A A, <
a;y, + a; a;, + a; iy, +a;
min t 11 ]1_'__._+t 23 ]k_t k+1 Jet+1
i F e Flp 1 F ( ! 2 g 2 Frl 2
NFE - FE et

Qg + Ajy iy

Lrti 5 - t1|ai1j1‘ - tk+l‘aik+ljk+l |)

In particular,

a; +a; a+a
)\_)\n> (l 1 2 - ¥ rs)a 41
=z e (P2 - o | (41)
somewhat resembling the bound
>\1 — >\n Z 2 max |a2‘j| (42)
i#]

(Parker [10, Theorem 7]).

4 Examples

Example 1. Consider the symmetric matrix

W N O
— O ot O
S O O N
N O~ W

cited from [11, Example 4]. Its eigenvalues are Ay = 9.3759, \y = 6.4230, A3 =
4.7754, Ay = 1.4257.

Bounds from Section 3.1. We have su A = 34, tr A = 22,

a; + a; as + aq 13
max — Qi ) = — azq = -
i#j 2
and
. <ai + Q. > a] + aq 5
min — Qi ) = — 414 = 3.
i#] ’ 2 2

The first bounds (19) with » = s = 1 and respectively r = 3, s = 2,

A4 Ag > 1344 2 =15, (43)
3A\1 42X >3.34+2- 8 =381,
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are quite good, since actually A; + Ay = 15.799, 3A\; 4+ 2Xs = 40.920. The
second bounds,

M4 >§-34435-22=13, 3\ +2X\ > 534+ 222 =343,

are easier to compute but not so good.
The first bound (20) with 7 = s = 1 gives A3+ Ay < i-34+g = 11, poorly.
Actually A3 + Ay = 6.201, and it is in fact trivial that

MAdotd+h 2
2 2
But using A\; + A2 + A3 + Ay = 22 and (43), we can do better

D 11.

As+A=22— (M +X)<22-15="T. (44)

The bound (20) is in this example poor also with other r,s. For instance,
2\3 4+ 3\ < 234+ 2 2 =304 while actually 2A; + 3\, = 13.828.

By (24),
A — A >max{i-34-32 —1.314 8} =6 (45)

Actually Ay — Ay = 7.950, and so this bound is satisfactory. The simpler
bound (23), \; —Ay > 2-6 =4, is poor. The first bound (21) with r = 3, = 2,

3 5 1
3A1 =20\ > 53425 =203,

manages rather well but the second bound 3A; — 2)\; > % - 34 — % <22 = 16%
does not. Actually 3\; — 2A\y = 25.276. Neither does (22) with r = 2,¢t = 3
succeed. We have —3\; +2)\; < % -34-3- % = —2%, and so 3\; — 24 > 2%,
very poorly.

Bounds from Section 3.2. Set k = 2 and t; = t; = 1 and also t; = 3,15 = 2
in (25). In both cases I} = {1,4}, I, = {3} is optimal. We have

4 3
A11:<3 7)7 A12:(6)7
and so

A4 >3- 1746 = 143, (46)
B3A\i 42X\ > 3.17+2-6 =371, (47)

quite well. Instead, (26) has no success. In both cases, I} = {1}, I, = {2} is
optimal. Then A;, = (4), A;, = (5), and so

A3+ M <4+5=9, (48)
2N+ 33X <3-442-5 =22, (49)
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rather poorly. The same trick as in (44) improves

A3+ A =22— (A + X)) <22-141 =71 (50)
The first bound (31) is attained for I = {1,3,4}, J = {1}. Then
4 2 3
Ar={260|, A=),
3 07
and so

The second bound, \;y — Ay > 7 —4 = 3, is simple but poor. Let us also set
k=1=1,1t =3,t,=2in (30). We have

3A\ =2\ >27—-2-5=17 (52)
(optimal I} = {1,3,4}, I, = {2}), not well. Neither does (32) succeed. We

have —2X\; +3A\; < 3-5— 227 = —3 (optimal I, = {2}, I, = {1,3,4}), and
actually —2\; + 3\y = —14.475.

Bounds from Section 3.3. The disadvantage of these bounds, compared with
those from Section 3.2, is that only the [;’s with two elements are considered,
but the advantage is that these sets are handled more effectively. Thus the
bounds from Section 3.3 may or may not improve those from Section 3.2. We
look what happens in our example. Since A is nonnegative, the bound (34)
cannot improve (25) if ¢, > 0, and so we skip it. By (35) (or (37) for (53)),

A3+ M <3-10435-12-2-1=38 (53)
(optimalz'l:1,j1:3,i2:2,j2:40rz'1:1,j1:4,z'2:2,j2:3) and
203 +3X\ < 3-11+11—-3-3 =183

(optimal i3 = 1,57 = 4,13 = 2, jo = 3), improving (48) and (49). On the other
hand, the bounds by (40) (or (41) for (54)),

M—A>3-12-1-10+2+1=4, (54)
3\ =20 >3.12-10+3-1+2-2=15
(optimal iy = 2,51 =4,iy = 1, jo = 3), do not improve (51) and (52).

Comparison. We compare some of our results with

Mo > 2(p+ \/%) (55)
Aot + A < 2@ - \/%> (56)

A — A, > 20, (57)
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due to Wolkowicz and Styan [11, Theorems 2.3 and 2.5], called “WS bounds”.

Here A AL
t 1 %
S 02:_[trA2_u,
n n n

We also include Parker’s bound (42) in comparison.

Since
p=24, 0®=1(154—1-484) = 2,

the WS bound (55) gives
A+ g > 2(8 + 1VIT) = 11 + V11 = 14.317.

Our bounds (43) and (46) are (slightly) better (but require more bookkeeping).
The WS bound (56) is

Ay + A < 11— V11 = 7.683,
and so (44) and (50) are better but (53) is worse. The WS bound (57),
A — A >2-3/33 =33 =5.745,
beats (51) but loses to (45). Parker’s bound (42),
M — A >2-3=6,

is as good as (45).

Example 2. The reason why some of our bounds in Example 1 are fairly good
is that A is nonnegative. But if A has entries with both positive and negative
real parts, then, due to cancellation in summing, the bounds are expected
to become weaker. (Possible imaginary parts always cancel.) Consider the
Hermitian matrix

4 =5+1 2 3
-5 —1 3 —4 14+2i
A= 2 —4 6 -3 ’

3 1-21 -3 7

obtained from Example 1 by replacing the zero entries with certain negative
numbers or complex number with negative real part. Then \; = 12.9723, \y =
9.3791, A3 = 1.7850, Ay = —2.1365.

Bounds from Sections 3.1 and 3.2. We have su A = 10, tr A = 22,

a; + a; a; +a
e (P ) = T R =
i#]
a2+a3_a :a3+a4_a :91
2 23 2 34 P
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and

min
i#

By the first bounds (19) and (20),
MAX>1-10495 =12, A+ M\ <1-10+25 =5

and, by (24),

(a,-+aj —§RCL-'> o a; + aq
ij | —

A — A >max{}-10-21, —1-10+93} =T.

Actually A\ + Ay = 22.351, A3 + Ay = —0.3515, Ay — Ay = 15.109, and so these
bounds are poor. Also the bounds obtained from Section 3.2 appear to be
poor.

Bounds from Section 3.3. Since

max (|ag| + |ars|) = |awa| + [ass| = V26 + 3,

itjrs
we have by (36) and (37)
AL+ Ag > 14+ v/26 = 19.099, (58)
As + Ay <8 — /26 = 2.901. (59)
Furthermore,
ma (ai+aj a, + ag +| |+\a ‘>
X - A4 TS =
itjArs 2 2 !
4 '5 L ;F D g + Jass] = 5 + v/26 = 10.099,

and so, by (41),
At — As > 10.099, (60)
which loses slightly to Parker’s bound (42),
AL — A1 > 2v/26 = 10.198.

The bounds (58) and (60) are not bad. Regarding the relative error, the
bound (59) is very bad, but its absolute error is of the same magnitude as that
of (58) and (60).

The WS bounds (55) and (56),

/14 /14
AL+ A > 114 T3:17.904, Ag+ A < 11— ?3:4.096,

lose to (58). On the other hand, the WS bound (57),
)\1 - )\4 Z V 143 - 11958,
beats (60).
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5 Computer experiments

We studied positive symmetric (“PS” in the sequel), real symmetric (“RS”),
and complex Hermitian (“CH”) 4 x 4 matrices experimentally. We generated
100 random matrices of each type by using the Matlab generator rand for PS
and randn for RS and CH. Weset k =2, r =1t =3, s =ty, =2,t = 1. For
each type and each bound, we computed the mean p and standard deviation o
of the relative error

b — al

|al

Y

where b is the bound under consideration and a is the corresponding actual
value.

In PS, the first bound (19) was the best (u = 0.0688, ¢ = 0.0436). Also
the simple second bound (19) managed well (z = 0.1814, 0 = 0.0516). The
bound (24) was the second best (u = 0.1007, ¢ = 0.0531), and (25) was the
third (1 = 0.1078, o = 0.0369).

The simple WS bound (57) was the best in RS (u = 0.2373, o = 0.0340).
Our bound (40) was the second (u = 0.3236, ¢ = 0.0921), Parker’s bound (42)
the third (u = 0.3270, 0 = 0.1227), and our bound (35) the fourth (u =
0.3385, o = 0.2805).

The bound (57) was the best also in CH (u = 0.2300, 0 = 0.0468). Our
first bound (31) was the second (u = 0.3187, 0 = 0.2854) and (40) the third
(n=10.3374, ¢ = 0.0960).

The magnitude of many bounds was roughly u ~ 0.5. An example of a
very poor result is the first bound (20) in PS (u = 12.948, 0 = 43.794). The
explanation of this catastrophe is that this bound is always positive, while the
actual values were mostly negative.
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