
SAÜ. Fen Bilimleri Dergisi, 13. Cilt, 1. Sayı,
s. 22-27, 2009

22

Use Of Entropy In The Knowledge Discovery Algorithms
Which Generate Rules According To Covering Approach

Ö. Akgöbek

USE OF ENTROPY IN THE KNOWLEDGE DISCOVERY
ALGORITHMS WHICH GENERATE RULES ACCORDING TO

COVERING APPROACH

Ömer AKGÖBEK1, Ercan ÖZTEMEL2

1Harran University Engineering Faculty, Department of Industrial Engineering, Sanliurfa, Turkey

e-mail :akgobek@harran.edu.tr
2 Marmara University Engineering Faculty, Department of Industrial Engineering, İstanbul, Turkey

e-mail : eoztemel@eng.marmara.edu.tr

ABSTRACT

The objective of this paper is to introduce the use of entropy for knowledge acquisition in the algorithms which
use the covering approach in inductive learning. REX-1 and REX-2 algorithms, which generate rules based on
the covering approach, are compared with other algorithms using the same principle. These algorithms which
adapt the mentioned approach generate rules using the search methods. As is used in the algorithms generating
the decision tree, the entropy can be used as well in algorithms which utilize the covering approach. While
generating rules by search methods, it is vital that the algorithms give priority to the attributes with high
complexity in an example set. However, use of entropy attaches the priority to the attributes with lower
complexity. ID3 and C4.5 algorithms may be cited among those using the entropy. Instead of direct rule
generation, but they use the decision tree to induce rules.

Keywords - Knowledge Discovery, Rule Extraction, Decision-Trees, Entropy

KAPSAMA YAKLAŞIMINA GÖRE KURAL ÜRETEN BİLGİ KEŞFİ
ALGORİTMALARINDA ENTROPİ KULLANIMI

ÖZET

Bu yayının amacı, endüktif öğrenmede kapsama yaklaşımını kullanan algoritmalarda bilgi kazancı için entropi
kullanımını sağlamaktır. Kapsama yaklaşımına göre kural üreten REX-1 ve REX-2 algoritmaları aynı metodla
kural üreten diğer algoritmalarla karşılaştırılacaktır. Bu algoritmalar arama metodlarını kullanarak kural üretirler.
Entropi, karar ağacı üreten algoritmalarda kullanıldığı gibi kapsama yaklaşımını kullanan algoritmalarda da
kullanılabilir. Arama metodları tarafından kurallar üretilirken örnek setindeki karmaşıklığı yüksek olan
özelliklere öncelik verilmesi kaçınılmazdır. Ancak entropi kullanımı karmaşıklığı daha az olan özelliklere
öncelik verir. Entropi kullanan algoritmalar arasında ID3 ve C4.5 sayılabilir. Fakat bu algoritmalar doğrudan
kural üretmek yerine karar ağacını kurallara dönüştürürler.

Anahtar Kelimeler – Bilgi keşfi, Kural çıkarma, Karar ağaçları, Entropi

I. INTRODUCTION

Inductive learning is a process that uses sets of
training examples to learn a concept. Many methods
have been suggested to generate decision rules from
learning examples. For that purpose, some algorithms
are needed for generating rules which determine the
description of the concepts to be learned. But the
description bears only one out of many possible
interpretations of the training data and, yet, it may
present a meaning completely irrelevant to the
meaning of the concept. Therefore, an inductive

learning algorithm should be sufficient to draw
multiple conclusions from learning examples [1].
A major problem in the design of learning algorithms
is the generation of a complex description from noisy
examples. Learning from noise corrupted data may
result in a large number of complicated decision rules
describing trivial instances. Hence, the resulting
concept description may not reflect general situations.
We call such a “overfitting” which refers to a
tendency to force the rule induced from training data
to agree with these data too closely, at the cost of
generalization to other examples. Poor concept

SAÜ. Fen Bilimleri Dergisi, 13. Cilt, 1. Sayı,
s. 22-27, 2009

23

Use Of Entropy In The Knowledge Discovery Algorithms
Which Generate Rules According To Covering Approach

Ö. Akgöbek

description may also cause the overfitting. To
overcome the noise-caused overfitting, many studies
have been performed and some methods have been
suggested. Among the solutions suggested, two
approaches are mentioned here. The first is to allow a
certain degree of inconsistent classification of training
examples so as to describe the basic attributes of a
concept in a general way. This approach is employed
by the ID family of algorithms [2,3]. The C4.5
algorithm by Quinlan is a descendant of ID3 which
converts its tree into rules and prunes both rule
conditions and whole rules[4]. The second approach is
to eliminate unimportant rules and only keep the ones
covering the largest number of examples and consider
them as general description of a concept [1].

I.1 Decision Tree and Rule-Based Algorithms

These algorithms generate concept descriptions from
examples by following specific procedures, and by
using a set of heuristics in separating examples of one
class from other classes. Such algorithms are
classified into two major families. The first is the
decision tree-based algorithms, and the second is rule-
based algorithms. An example of the first family
algorithms is the ID family of algorithms such as
ID3[2] and C4. The AQ family of algorithms is the
examples for the second type of algorithms. Popular
algorithms using this technique are the AQ family of
algorithms [5,6], RULES family [7,8,9], ILA[10],
REX-1[11] and REX-2[12].

I.1.1 Decision tree-based algorithms

These algorithms generate decision trees based on the
divide-and-conquer approach. Decision tree-based
algorithms usually use the information entropy
measure to grow a decision tree by searching for a
feature that gives maximum information gain. The
procedure of growing a decision tree continues by
dividing examples into smaller subsets until the
training examples are correctly classified based on a
user-specified termination criterion.
In real-world applications, training examples are
usually insufficient to define a concept description
uniquely. Therefore, learning algorithms need a
flexibility to produce different generalizations from
given examples. In decision tree-based algorithms, the
description of a subset of examples in a leaf node of a
tree is uniquely described as series of feature tests
from the root to the bottom of a tree. This approach
does not have the flexibility of describing a target
concept in different ways.

I.1.2 Rule-based algorithms

These algorithms generate rules according to the
covering approach. Rule-based algorithms have the
ability to generate multiple descriptions of a concept.
An example is the AQ15 algorithm where the
empirical learning was treated by Michalski as the

general covering problem[5]. The basic term of a
cover, used in the AQ family of algorithms, implies
that there may be multiple covers to cover positive
training examples. This resulted in the development of
procedures that produce a quasioptimal solution in
polynomial time. Generally, AQ algorithms follow a
greedy heuristics that tries to include/exclude as many
as possible of positive/negative examples in searching
for a complex. The AQ algorithms use a set of user
specified description preference criteria to describe a
subset of positive examples covered by a complex[1].
REX-1 and REX-2 are the type of algorithms which
generate rules according to the covering approach and
use the entropy in the process.

II. INFORMATION MEASUREMENT,
ENTROPY AND KNOWLEDGE GAIN

Roughly speaking, entropy is the degree of disorder of
a system. It is such an important physical concept that
many disciplines employ entropic functions such as
thermodynamic entropy, topological entropy. As the
disorder of a system increases, any increasing
function may be used as an entropic function [13,14].
Information value of example set is computed by
equation (1),
















m

i

ii

S
S

S
SSInfo

1
2log)(

 (1)
where m denotes the number of classes in the example
set, |S| denotes the number of examples in the set, and
Si denotes the number of examples of the ith class.
Entropy values are computed for each value in a class.
Let T1, T2, ...Tn show the subsets which include the
examples with an element. k denotes the number of
elements in a subset, freq(Ck,T) denotes the number of
examples of Ck class in subset T and |T| denotes the
total number of examples in the subset. Therefore,
entropy for each value is computed with equation (2).

T
TCfreq

T
TCfreqTE k

k

i

k),(
log

),(
)(2

1

 


 (2)

Entropy for an attribute is equal to the addition of
entropy value multiplied with the probability of the
value (3).





n

i
i

i TE
T
T

AE
1

)()(

 (3)

where A denotes a attribute, n the number of values in
a attribute, and E(Ti) the entropy of ith value.
Information gain of a attribute equals to the
information value of the example set minus the
entropy of the attribute. The information gain for
attribute A in example set S is computed with
equation (4). Info(S) is the same for all attributes, as it
is the information gain for the whole example set.

SAÜ. Fen Bilimleri Dergisi, 13. Cilt, 1. Sayı,
s. 22-27, 2009

24

Use Of Entropy In The Knowledge Discovery Algorithms
Which Generate Rules According To Covering Approach

Ö. Akgöbek

)()(),(AESInfoASGain 
 (4)

Split information is computed for each attribute with
equation (5).





nA

i

ii

S
S

S
S

ASSplitInfo
1

2log),(

 (5)

where the split information is computed for attribute
A in example set S.

An : Number of values of attribute A.
Si : Number of examples where the ith value of
 attribute A appears.
S : Total number of examples in the example set.

The gain ratio for each attribute is computed with eqn.
(6).

),(
),(),(
ASSplitInfo

ASGainASGainRatio 

 (6)

Having sorted out the computed gain ratio values in
descending order, the example set is re-arranged.
Decision tree algorithms consider the attribute with
the highest GainRatio as the root of the tree.

III. RULE GENERATION USING ENTROPY

AND KNOWLEDGE GAIN

The proposed algorithm efficiently induces general
rules from example sets (training data). We explain it
using the example of Golf as given in Table 1[15].

Table 1. Golf Training Set

No Weather Temperature Humidity Wind Decision
1 Sunny High High Slight Don’t Play
2 Sunny High High Strong Don’t Play
3 Cloudy High High Slight Play
4 Rainy Normal High Slight Play
5 Rainy Low Normal Slight Play
6 Rainy Low Normal Strong Don’t Play
7 Cloudy Low Normal Strong Play
8 Sunny Normal High Slight Don’t Play
9 Sunny Low Normal Slight Play
10 Rainy Normal Normal Slight Play
11 Sunny Normal Normal Strong Play
12 Cloudy Normal High Strong Play
13 Cloudy High Normal Slight Play
14 Rainy Normal High Strong Don’t Play

The example set given in Table 1 consists of 14
examples, 4 attributes (Weather, Temperature,
Humidity, Wind) and 2 classes (Play, Don’t Play).
The attributes in the example and their values are
given below:

Attribute Values
Weather Rainy, Sunny, Cloudy
Temperature High, Medium, Low
Humidity Normal, High

Wind Slight, Strong

Calculate the entropy for each attribute and value. As
it is seen, the attribute, Weather, has three values:
Rainy, Sunny and Cloudy. The value, Rainy, of the
attribute, Weather, appears in 5 examples three of
which belong to the class, Play, and two of which
belong to the class, Don’t Play. Therefore, the entropy
for {Weather,Rainy} can be computed as:

5
3log

5
3

5
2log

5
2

22, RainyWeatherE

bitE RainyWeather 971.0, 

The value, Sunny, of the attribute, Weather, appears in
5 examples three of which belong to the class, Don’t
Play, and two of which belong to the class, Play.
Therefore, the entropy for {Weather, Sunny} can be
computed as:

5
3log

5
3

5
2log

5
2

22, SunnyWeatherE

bitE SunnyWeather 971.0, 

The value, Cloudy, of the attributes, Weather, appears
in 4 examples all of which belong to the class, Play.
Therefore, the entropy for {Weather, Cloudy} can be
computed as:

4
4log

4
4

2, CloudyWeatherE

bitE CloudyWeather 0, 

From the above calculations, the entropy for the
attributes, Weather, is computed as:

CloudyWeatherSunnyWeatherRainyWeatherWeather xExExEE ,,, 14
4

14
5

14
5



)0(
14
4)971.0(

14
5)971.0(

14
5 xxxEWeather 

bitEWeather 694.0

Second attributes, Temperature, has three values:
{High, Low, Medium}, third attributes, Humidity, has
two values: {High, Normal}, and the fourth attributes,
Wind, has two values: {Slight, Strong}. The entropies
computed for each value of the attributes are
presented in Table 2.

Table 2. Entropy values for the attributes and their values

Attribute Entropy (bit) Value Entropy (bit)

Weather 0.694
Rainy 0.971
Sunny 0.971
Cloudy 0

Temperature 0.911
High 1
Low 0.811
Normal 0.918

Humidity 0.788 High 0.985
Normal 0.592

Wind 0.892 Slight 0.811
Strong 1

SAÜ. Fen Bilimleri Dergisi, 13. Cilt, 1. Sayı,
s. 22-27, 2009

25

Use Of Entropy In The Knowledge Discovery Algorithms
Which Generate Rules According To Covering Approach

Ö. Akgöbek

Info is computed as 0.940 for the example set. The
SplitInfo, Gain and GainRatio for each characteristic
are given in Table 3.

Table 3. Calculated values for characteristics

Attribute SplitInfo Gain GainRatio
Weather 1.577 0.264 0.156
Temperature 1.577 0.029 0.018
Humidity 1.000 0.152 0.152
Wind 0.985 0.048 0.049

Sort out the Information GainRatios calculated in
descending order:

Weather (0.156) > Humidity (0.152) > Wind
(0.049) > Temperature (0.018)

Considering the above sorting, the example set in
Table 1 is rearranged according to the attributes,
Weather, Humidity, Wind, and Temperature, and the
results are given in Table 4.

Table 4. Re-arranged example set

No Weather Humidity Wind Temp. Decision
1 Sunny High Slight High Don’t Play
2 Sunny High Strong High Don’t Play
3 Cloudy High Slight High Play
4 Rainy High Slight Normal Play
5 Rainy Normal Slight Low Play
6 Rainy Normal Strong Low Don’t Play
7 Cloudy Normal Strong Low Play
8 Sunny High Slight Normal Don’t Play
9 Sunny Normal Slight Low Play
10 Rainy Normal Slight Normal Play
11 Sunny Normal Strong Normal Play
12 Cloudy High Strong Normal Play
13 Cloudy Normal Slight High Play
14 Rainy High Strong Normal Don’t Play

Having sorted the example set as in Table 4, Table 5
gives the set of rules obtained using REX-2.

Table 5. Rules generated with REX-2 algorithm for Golf Example

Rule Rule Description
1 IF Weather=Cloudy THEN Decision=Play
2 IF Weather=Sunny AND Humidity=High THEN

Decision=Don’t Play
3 IF Weather=Rainy AND Wind=Slight THEN

Decision=Play
4 IF Weather=Rainy AND Wind=Strong THEN

Decision=Don’t Play
5 IF Weather=Sunny AND Humidity=Normal THEN

Decision=Play

The rules generated by REX-1 and C4.5 algorithms
using the Golf Example are presented in Table 6. It is
noted that both algorithms produced the same rules
and the same number of rules just as REX-2 did.

Table 6. Rules generated by REX-1 and C4.5 algorithms (Golf

problem)

Rule Rule Description
1 IF Weather=Cloudy THEN Decision=Play
2 IF Humidity=High AND Weather=Sunny THEN

Decision=Don’t Play
3 IF Wind=Slight AND Weather=Rainy THEN

Decision=Play
4 IF Wind=Strong AND Weather=Rainy THEN

Decision=Don’t Play
5 IF Humidity=Normal AND Weather=Sunny THEN

Decision=Play

IV. CONCLUSION

In this section, REX-2 algorithm, which adapts the
covering approach to generate rules using the entropy,
is compared with other algorithms by using different
example sets.

IV.1. Comparison of REX-2 with other algorithms,
using the IRIS example set

The rules generated by the REX-1, REX-2, Rules-3,
ID3 and Rules-3 Plus algorithms using the IRIS
example set are given in Table 7a, 7b, 7c, 7d and 7e,
respectively.

Table 7a. Rules generated by REX-1 (Iris example set)

Rule Rule Description
1 IF 1.3PW<1.7 AND 3.95PL<4.93 THEN IRIS=Iris-

versicolor
2 IF 0PW<0.51 THEN IRIS =Iris-setosa
3 IF 1.7PW<2.1 THEN IRIS =Iris-virginica
4 IF 0.9PW<1.3 THEN IRIS =Iris-versicolor
5 IF 2.1PW<2.5 THEN IRIS =Iris-virginica
6 IF 1PL<1.98 THEN IRIS=Iris-setosa
7 IF 4.93PL<5.91 AND 2.8SW<3.2 THEN IRIS =Iris-

virginica
8 IF 1.3PW<1.7 AND 2.4SW<2.8 THEN IRIS =Iris-

versicolor

Table 7b. Rules generated by REX-2 (IRIS data set)

Rule Rule Description
1 IF 1PL<1.98 THEN IRIS=Iris-setosa
2 IF 1.7PW<2.1 THEN IRIS =Iris-virginica
3 IF 0.9PW<1.3 THEN IRIS =Iris-versicolor
4 IF 2.1PW<2.5 THEN IRIS =Iris-virginica

5 IF 3.95PL<4.93 AND 1.3PW<1.7 THEN IRIS
=Iris-versicolor

6 IF 4.93PL<5.91 AND 2.8SW<3.2 THEN IRIS =Iris-
virginica

7 IF 1.3PW<1.7 AND 2.4SW<2.8 THEN IRIS =Iris-
versicolor

SAÜ. Fen Bilimleri Dergisi, 13. Cilt, 1. Sayı,
s. 22-27, 2009

26

Use Of Entropy In The Knowledge Discovery Algorithms
Which Generate Rules According To Covering Approach

Ö. Akgöbek

Table 7c. Rules generated by RULES-3 (Iris example set)

Rule Rule Description
1 IF 6.56SL<7.13 AND 3.95PL<4.93 THEN IRIS=Iris-

versicolor
2 IF 5.91PL<6.9 THEN IRIS =Iris-virginica
3 IF 0.9PW<1.3 THEN IRIS =Iris-versicolor
4 IF 4.93PL<5.91 THEN IRIS =Iris-virginica
5 IF 6SL<6.56 AND 3.95PL<4.93 THEN IRIS =Iris-

versicolor
6 IF 4.86SL<5.43 AND 3.95PL<4.93 THEN IRIS =Iris-

virginica
7 IF 1PL<1.98 THEN IRIS =Iris-setosa
8 IF 2.96PL<3.95 THEN IRIS =Iris-versicolor
9 IF 5.43SL<6 AND 1.3PW<1.7 THEN IRIS =Iris-

versicolor
10 IF 5.43SL<6 AND 3.2SW<3.6 THEN IRIS =Iris-

versicolor
11 IF 2.8SW<3.2 AND 1.7PW<2.1 THEN IRIS =Iris-

virginica

Table 7d. Rules generated by ID3 (Iris example set)

Rule Rule Description
1 IF 1PL<1.98 THEN IRIS =Iris-setosa
2 IF 4.93PL<5.91 THEN IRIS =Iris-virginica
3 IF 5.91PL<6.9 THEN IRIS =Iris-virginica
4 IF 3.95PL<4.93 AND 1.3PW<1.7 THEN IRIS

=Iris-versicolor
5 IF 3.95PL<4.93 AND 0.9PW<1.3 THEN IRIS

=Iris-versicolor
6 IF 3.95PL<4.93 AND 1.7PW<2.1 AND

2.4SW<2.8 THEN IRIS =Iris-virg.
7 IF 3.95PL<4.93 AND 1.7PW<2.1 AND

3.2SW<3.6 THEN IRIS =Iris-versi.
8 IF 2.96PL<3.95 THEN IRIS=Iris-versicolor

Tablo 7e. Rules generated by Rules-3 Plus (Iris example set)

Rule Rule Description
1 IF 1PL<1.98 THEN IRIS=Iris-setosa
2 IF 3.95PL<4.93 AND 1.3PW<1.7 THEN IRIS =Iris-

versicolor
3 IF 5.91PL<6.9 THEN IRIS =Iris-virginica
4 IF 4.93PL<5.91 THEN IRIS =Iris-virginica
5 IF 2.4SW<2.8 AND 1.7PW<2.1 THEN IRIS =Iris-

virginica
6 IF 2.96PL<3.95 THEN IRIS =Iris-versicolor
7 IF 0.9PW<1.3 THEN IRIS =Iris-versiolor
8 IF 2.1PW<1.5 THEN IRIS =Iris-virginica
9 IF 3.2SW<3.6 AND 3.95PL<4.93 THEN IRIS =Iris-

versicolor
10 IF 2.8SW<3.2 AND 1.7PW<2.1 THEN IRIS =Iris-

virginica

It should be noted that while the number of rules and
conditions generated by REX-1 was 8 and 11,
respectively, REX-2 generated 7 rules and 10
conditions. On the other hand, ID3 produced 8 rules
and 14 conditions. The algorithms ID3, Rules-3,
Rules-3 Plus, Rules-4 and REX-1 were compared in
terms of the number of rules and conditions
generated. The results are given in Table 8.

Table 8. Number of rules and the mean of conditions per a rule
(IRIS example set)

Algorithm Number of
Rules

Number of
Conditions

RULES-3 11 17
RULES-3 PLUS 10 14
RULES-4 9 12
ID3 8 14
REX-1 8 11
REX-2 7 10

Compared with RULES family algorithms, REX-1
and REX-2 generated fewer rules and conditions. In
addition, using the IRIS example set, the rate of
efficiency in rule generation was 93.60%, 93.75% and
100% for Rules-4[9, 16], REX-1, and REX-2;
respectively.

IV.2. Comparison of performance analyses of
REX-2 with TDIDT and PRISM algorithms

In this section, we give some information on the test
results of REX-2 with TDIDT and PRISM
algorithms[17]. We use Monk1, Monk2, Monk3 and
Soybean example sets and their testing data sets. The
attributes of Monk data sets derived from real world
problems are given in Table 10. Soybean data sets
[14, 16] consist of 683 examples, 35 Attributes, and
19 classes. The results obtained with REX-2, TDIDT
and PRISM algorithms using example sets of Monk1,
Monk2, Monk3 and Soybean are presented in Table
9[17].

Table 9. Results obtained with the REX-2, TDIDT and PRISM
algorithms

Example Set TDIDT PRISM REX-2
Monk1 46 25 21
Monk2 87 73 83
Monk3 28 26 24
Soybean 109 107 98
Ps : INDUCED was used to obtain data from TDIDT and PRISM algorithms.

Mean number of conditions per a rule was obtained
by the total number of conditions divided by the
number of rules. It is seen that TDIDT algorithm
generated the highest number of rules, compared with
the other algorithms. The number of rules for TDIDT,
PRISM and REX-2 are 270, 231 and 226,
respectively.
Another preferred method of algorithm comparison is
using the testing example sets. These sets are used to
determine the rate of accuracy using the generated
rules. That is, they test the results generated by an
algorithm using an undefined example. Testing sets
are obtained from the original testing sets. The rate of
accuracy at the end of the tests is given in Table
10[18].

SAÜ. Fen Bilimleri Dergisi, 13. Cilt, 1. Sayı,
s. 22-27, 2009

27

Use Of Entropy In The Knowledge Discovery Algorithms
Which Generate Rules According To Covering Approach

Ö. Akgöbek

Table 10. Comparison of Rate of Accuracy using
Testing Example Sets

Example
Set

Number of
Examples TDIDT PRISM REX-2

Monk1 36 75.00% 77.78% 100.00%
Monk2 52 46.15% 53.85% 78.80%
Monk3 36 91.67% 83.33% 83.33%
Soybean 204 85.78% 84.80% 97.06%

Table 9 indicates that all of the algorithms, except
TDIDT, produce almost the same results. However,
the results obtained using the testing sets in Table 10
show that the introduced algorithm, REX-2, yields a
very high rate of accuracy. One of the reasons for
such a high rate may be the selection of attributes
based on the entropy and information gain values.

V. DISCUSSION

Algorithms using the covering approach generate
rules by performing only some search methods in the
example sets. On the other hand, the algorithms
benefiting from the divide-and-conquer approach
generate a decision tree based on the entropy value
and, then, induce rules out of the decision tree.
Thanks to that feature, decision tree algorithms are
able to generate a greater number of rules. Yet, some
decision tree algorithms employ a technique called
pruning which eliminates some unnecessary rules and
thereby, resulting in a fewer number of generated
rules [19]. As REX-2 algorithm uses both the
covering approach and the entropy value and does not
perform the pruning technique, it is capable of
generating fewer rules and classifying any given
example set with a higher rate of efficiency.

VI. REFERENCES

[1] Cios, K.J., Liu, N., Goodenday, L.S.,
“Generation of diagnostic rules via inductive
machine learning”, Kybernetes, vol. 22, no 5,
44-56, 1993.

[2] Quinlan, J.R., “Learning efficient classification
procedures and their application to chess end
games”. In: Michalski; R.S., Carbonell, J.G. and
Mitchell, T.M. (Eds), Machine Learning: An
Artificial Intelligence Approach, Tioga
Publishing Co, Palo Alto. CA, 463-482, 1983.

[3] Cheng, J., Fayyad, U.M., Irani, K.B., Qian, Z.,
“Improved decision trees: A generalized version
of ID3”, Proceedings of the Fifth International
Conference on Machine Learning, Ann Arbor,
Michigan, 100-106, 1988.

[4] Quinlan, J.R., “C4.5: Programs for Machine
Learning”, Morgan Kaufmann, San Mateo, CA,
1993.

[5] Michalski, R.S., “A theory and methodology of
inductive learning”, Machine Learning, Palo
Alto, CA, 83-134, 1983.

[6] Kaufman, K.A., Michalski, R.S., "An Adjustable
Rule Learner for Pattern Discovery Using the
AQ Methodology”, Journal of Intelligent
Information Systems, 14, 199-216, 2000.

[7] Pham D. T., Aksoy M.S., “An algorithm for
automatic rule induction”, Artificial Intel. Eng.,
8, 277-282,1993.

[8] Pham, D. T; Dimov, S.S., “An algorithm for
incremental inductive learning”. Proc. Instn.
Mech. Engrs, vol. 211, part B, 239 – 249, 1997.

[9] Pham D. T, Dimov S.S., “The RULES-4
incremental inductive learning algorithm”,
Applications of Artificial Intelligence in
Engineering XII, R.A. Adey G. Rzevski and R.
Teti (Eds) Computational Mechanics
Publications Southampton Boston, 163-166,
1997.

[10] Tolun, M. R., Abu-Soud S.M., “ILA:An
inductive learning algorithm for rule extraction”,
Expert Systems With Applications, Vol: 14, 361-
370, 1998.

[11] Akgöbek Ö., Aydin Y.S., Öztemel E., Aksoy
M.S., “A new algorithm for automatic
knowledge acquisition in inductive learning”,
Knowledge-Based Systems 19, 388-395, 2006.

[12] Akgöbek, Ö., “New algorithms for knowledge
acquisition in inductive learning”, Ph.D. Thesis,
Sakarya University, Sakarya, Turkey, 2003.

[13] Klinkenberg, R., “Rule set quality measures for
inductive learning algorithms”, Master Thesis,
University Of Missouri – Rolla, 1996.

[14] Piramuthu S., Sikora T. R., “Iterative feature
construction for improving inductive learning
algorithms”, Expert Systems with Applications
36,3401-3406, 2009.

[15] Blake, C.L., Merz, C.J., “UCI Repository of
Machine Learning Databases”, [http://ftp.ics.uci.
edu/pub/ml-repos/machine-learning-databases/].
Irvine, CA: University of California, Department
of Information and Computer Science, 1998.

[16] Pham D. T., Dimov S. S., Salem Z., “Technique
for selecting examples in inductive learning”,
ESIT 2000, Aachen, Germany, 2000.

 [17] Bramer, M. A., “Inducer: A rule induction
workbench for data mining”, IFIP World
Computer Congress Conference on Intelligent
Information Processing, 2000, Beijing,
Proceedings. Beijing: Publishing House of
Electronics Industry, 499-506, 2000.

[18] Bramer M.A., “Automatic induction of
classification rules from examples using N-
Prism”, Research and Development in Intelligent
Systems XVI. Springer-Verlag, 99-121, 2000.

[19] Fournier, D., Cremilleux, B., “A quality index
for decision tree pruning”, Knowledge-Based
System 15, 37-43, 2002.

