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ABSTRACT 
 

The objective of this paper is to introduce the use of entropy for knowledge acquisition in the algorithms which 
use the covering approach in inductive learning. REX-1 and REX-2 algorithms, which generate rules based on 
the covering approach, are compared with other algorithms using the same principle.  These algorithms which 
adapt the mentioned approach generate rules using the search methods. As is used in the algorithms generating 
the decision tree, the entropy can be used as well in algorithms which utilize the covering approach. While 
generating rules by search methods, it is vital that the algorithms give priority to the attributes with high 
complexity in an example set. However, use of entropy attaches the priority to the attributes with lower 
complexity. ID3 and C4.5 algorithms may be cited among those using the entropy. Instead of direct rule 
generation, but they use the decision tree to induce rules.  
 
Keywords - Knowledge Discovery, Rule Extraction, Decision-Trees, Entropy 
 

KAPSAMA YAKLAŞIMINA GÖRE KURAL ÜRETEN BİLGİ KEŞFİ 
ALGORİTMALARINDA ENTROPİ KULLANIMI 

 
ÖZET 

 
Bu yayının amacı, endüktif öğrenmede kapsama yaklaşımını kullanan algoritmalarda bilgi kazancı için entropi 
kullanımını sağlamaktır. Kapsama yaklaşımına göre kural üreten REX-1 ve REX-2 algoritmaları aynı metodla 
kural üreten diğer algoritmalarla karşılaştırılacaktır. Bu algoritmalar arama metodlarını kullanarak kural üretirler. 
Entropi, karar ağacı üreten algoritmalarda kullanıldığı gibi kapsama yaklaşımını kullanan algoritmalarda da 
kullanılabilir. Arama metodları tarafından kurallar üretilirken örnek setindeki karmaşıklığı yüksek olan 
özelliklere öncelik verilmesi kaçınılmazdır. Ancak entropi kullanımı karmaşıklığı daha az olan özelliklere 
öncelik verir. Entropi kullanan algoritmalar arasında ID3 ve C4.5 sayılabilir. Fakat bu algoritmalar doğrudan 
kural üretmek yerine karar ağacını kurallara dönüştürürler.  
 
Anahtar Kelimeler – Bilgi keşfi, Kural çıkarma, Karar ağaçları, Entropi 
 

I. INTRODUCTION 
 
Inductive learning is a process that uses sets of 
training examples to learn a concept. Many methods 
have been suggested to generate decision rules from 
learning examples. For that purpose, some algorithms 
are needed for generating rules which determine the 
description of the concepts to be learned. But the 
description bears only one out of many possible 
interpretations of the training data and, yet, it may 
present a meaning completely irrelevant to the 
meaning of the concept. Therefore, an inductive 

learning algorithm should be sufficient to draw 
multiple conclusions from learning examples [1].  
A major problem in the design of learning algorithms 
is the generation of a complex description from noisy 
examples. Learning from noise corrupted data may 
result in a large number of complicated decision rules 
describing trivial instances. Hence, the resulting 
concept description may not reflect general situations. 
We call such a “overfitting” which refers to a 
tendency to force the rule induced from training data 
to agree with these data too closely, at the cost of 
generalization to other examples. Poor concept 
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description may also cause the overfitting. To 
overcome the noise-caused overfitting, many studies 
have been performed and some methods have been 
suggested. Among the solutions suggested, two 
approaches are mentioned here. The first is to allow a 
certain degree of inconsistent classification of training 
examples so as to describe the basic attributes of a 
concept in a general way. This approach is employed 
by the ID family of algorithms [2,3]. The C4.5 
algorithm by Quinlan is a  descendant of ID3 which 
converts its tree into rules and prunes both rule 
conditions and whole rules[4]. The second approach is 
to eliminate unimportant rules and only keep the ones 
covering the largest number of examples and consider 
them as general description of a concept [1].  
 
I.1 Decision Tree and Rule-Based Algorithms 

These algorithms generate concept descriptions from 
examples by following specific procedures, and by 
using a set of heuristics in separating examples of one 
class from other classes. Such algorithms are 
classified into two major families. The first is the 
decision tree-based algorithms, and the second is rule-
based algorithms. An example of the first family 
algorithms is the ID family of algorithms such as 
ID3[2] and C4. The AQ family of algorithms is the 
examples for the second type of algorithms. Popular 
algorithms using this technique are the AQ family of 
algorithms [5,6], RULES family [7,8,9], ILA[10], 
REX-1[11] and REX-2[12].  
 
I.1.1 Decision tree-based algorithms 

These algorithms generate decision trees based on the 
divide-and-conquer approach. Decision tree-based 
algorithms usually use the information entropy 
measure to grow a decision tree by searching for a 
feature that gives maximum information gain. The 
procedure of growing a decision tree continues by 
dividing examples into smaller subsets until the 
training examples are correctly classified based on a 
user-specified termination criterion.  
In real-world applications, training examples are 
usually insufficient to define a concept description 
uniquely. Therefore, learning algorithms need a 
flexibility to produce different generalizations from 
given examples. In decision tree-based algorithms, the 
description of a subset of examples in a leaf node of a 
tree is uniquely described as series of feature tests 
from the root to the bottom of a tree. This approach 
does not have the flexibility of describing a target 
concept in different ways. 
 
I.1.2 Rule-based algorithms 

These algorithms generate rules according to the 
covering approach. Rule-based algorithms have the 
ability to generate multiple descriptions of a concept. 
An example is the AQ15 algorithm where the 
empirical learning was treated by Michalski as the 

general covering problem[5]. The basic term of a 
cover, used in the AQ family of algorithms, implies 
that there may be multiple covers to cover positive 
training examples. This resulted in the development of 
procedures that produce a quasioptimal solution in 
polynomial time. Generally, AQ algorithms follow a 
greedy heuristics that tries to include/exclude as many 
as possible of positive/negative examples in searching 
for a complex. The AQ algorithms use a set of user 
specified description preference criteria to describe a 
subset of positive examples covered by a complex[1]. 
REX-1 and REX-2 are the type of algorithms which 
generate rules according to the covering approach and 
use the entropy in the process. 

 
II. INFORMATION MEASUREMENT, 
ENTROPY AND KNOWLEDGE GAIN 

 
Roughly speaking, entropy is the degree of disorder of 
a system. It is such an important physical concept that 
many disciplines employ entropic functions such as 
thermodynamic entropy, topological entropy. As the 
disorder of a system increases, any increasing 
function may be used as an entropic function [13,14].  
Information value of example set is computed by 
equation (1), 
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where m denotes the number of classes in the example 
set, |S| denotes the number of examples in the set, and 
Si denotes the number of examples of the ith class.   
Entropy values are computed for each value in a class. 
Let T1, T2, ...Tn show the subsets which include the 
examples with an element. k denotes the number of 
elements in a subset, freq(Ck,T) denotes the number of 
examples of Ck class in subset T and |T| denotes the 
total number of examples in the subset. Therefore, 
entropy for each value is computed with equation (2). 
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Entropy for an attribute is equal to the addition of 
entropy value multiplied with the probability of the 
value (3). 
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where A denotes a attribute, n the number of values in 
a attribute, and E(Ti) the entropy of ith value.  
Information gain of a attribute equals to the 
information value of the example set minus the 
entropy of the attribute. The information gain for 
attribute A in example set S is computed with 
equation (4). Info(S) is the same for all attributes, as it 
is the information gain for the whole example set.  
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Split information is computed for each attribute with 
equation (5).  
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where the split information is computed for attribute 
A in example set S.   

An  : Number of values of attribute A. 
Si  : Number of examples where the ith value of     
     attribute A appears. 
S  : Total number of examples in the example set. 

The gain ratio for each attribute is computed with eqn. 
(6). 
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Having sorted out the computed gain ratio values in 
descending order, the example set is re-arranged. 
Decision tree algorithms consider the attribute with 
the highest GainRatio as the root of the tree.  

 
III. RULE GENERATION USING ENTROPY 

AND KNOWLEDGE GAIN 
 
The proposed algorithm efficiently induces general 
rules from example sets (training data). We explain it 
using the example of Golf as given in Table 1[15].   

 
Table 1. Golf Training Set 

No Weather Temperature Humidity Wind Decision 
1 Sunny High High Slight Don’t Play 
2 Sunny High High Strong Don’t Play 
3 Cloudy High High Slight Play 
4 Rainy Normal High Slight Play 
5 Rainy Low Normal Slight Play 
6 Rainy Low Normal Strong Don’t Play 
7 Cloudy Low Normal Strong Play 
8 Sunny Normal High Slight Don’t Play 
9 Sunny Low Normal Slight Play 
10 Rainy Normal Normal Slight Play 
11 Sunny Normal Normal Strong Play 
12 Cloudy Normal High Strong Play 
13 Cloudy High Normal Slight Play 
14 Rainy Normal High Strong Don’t Play 

 
The example set given in Table 1 consists of 14 
examples, 4 attributes (Weather, Temperature, 
Humidity, Wind) and 2 classes (Play, Don’t Play). 
The attributes in the example and their values are 
given below:   
 
Attribute Values 
Weather Rainy,  Sunny, Cloudy 
Temperature  High, Medium, Low 
Humidity Normal, High 

Wind Slight, Strong 
 
Calculate the entropy for each attribute and value. As 
it is seen, the attribute, Weather, has three values: 
Rainy, Sunny and Cloudy. The value, Rainy, of the 
attribute, Weather, appears in 5 examples three of 
which belong to the class, Play, and two of which 
belong to the class, Don’t Play. Therefore, the entropy 
for {Weather,Rainy} can be computed as:  
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The value, Sunny, of the attribute, Weather, appears in 
5 examples three of which belong to the class, Don’t 
Play, and two of which belong to the class, Play. 
Therefore, the entropy for {Weather, Sunny} can be 
computed as:  

5
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The value, Cloudy, of the attributes, Weather, appears 
in 4 examples all of which belong to the class, Play. 
Therefore, the entropy for {Weather, Cloudy} can be 
computed as:  

4
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From the above calculations, the entropy for the 
attributes, Weather, is computed as: 
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Second attributes, Temperature, has three values: 
{High, Low, Medium}, third attributes, Humidity, has 
two values: {High, Normal}, and the fourth attributes, 
Wind, has two values: {Slight, Strong}. The entropies 
computed for each value of the attributes are 
presented in Table 2.  
 

Table 2. Entropy values for the attributes and their values 

Attribute  Entropy (bit) Value Entropy (bit) 

Weather 0.694 
Rainy 0.971 
Sunny 0.971 
Cloudy 0 

Temperature 0.911 
High 1 
Low 0.811 
Normal 0.918 

Humidity 0.788 High 0.985 
Normal 0.592 

Wind 0.892 Slight 0.811 
Strong 1 
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Info is computed as 0.940 for the example set. The 
SplitInfo, Gain and GainRatio for each characteristic 
are given in Table 3.  
 

Table 3. Calculated values for characteristics 

Attribute SplitInfo Gain GainRatio 
Weather 1.577 0.264 0.156 
Temperature 1.577 0.029 0.018 
Humidity 1.000 0.152 0.152 
Wind 0.985 0.048 0.049 

 
Sort out the Information GainRatios calculated in 
descending order:  

 
Weather (0.156) > Humidity (0.152) > Wind 
(0.049) > Temperature (0.018) 
 
Considering the above sorting, the example set in 
Table 1 is rearranged according to the attributes, 
Weather, Humidity, Wind, and Temperature, and the 
results are given in Table 4. 

 
Table 4. Re-arranged example set 

No Weather Humidity Wind Temp. Decision 
1 Sunny High Slight High Don’t Play 
2 Sunny High Strong High Don’t Play 
3 Cloudy High Slight High Play 
4 Rainy High Slight Normal Play 
5 Rainy Normal Slight Low Play 
6 Rainy Normal Strong Low Don’t Play 
7 Cloudy Normal Strong Low Play 
8 Sunny High Slight Normal Don’t Play 
9 Sunny Normal Slight Low Play 
10 Rainy Normal Slight Normal Play 
11 Sunny Normal Strong Normal Play 
12 Cloudy High Strong Normal Play 
13 Cloudy Normal Slight High Play 
14 Rainy High Strong Normal Don’t Play 

 
Having sorted the example set as in Table 4, Table 5 
gives the set of rules obtained using REX-2. 

 
Table 5. Rules generated with REX-2 algorithm for Golf Example 

Rule Rule Description 
1 IF Weather=Cloudy THEN Decision=Play 
2 IF Weather=Sunny AND Humidity=High THEN  

Decision=Don’t Play 
3 IF Weather=Rainy AND Wind=Slight  THEN  

Decision=Play 
4 IF Weather=Rainy AND Wind=Strong THEN  

Decision=Don’t Play   
5 IF Weather=Sunny AND Humidity=Normal THEN  

Decision=Play 
 
The rules generated by REX-1 and C4.5 algorithms 
using the Golf Example are presented in Table 6. It is 
noted that both algorithms produced the same rules 
and the same number of rules just as REX-2 did.   
 

 

Table 6. Rules generated by REX-1 and C4.5 algorithms (Golf 

problem) 

Rule Rule Description 
1 IF Weather=Cloudy THEN Decision=Play 
2 IF Humidity=High AND Weather=Sunny THEN  

Decision=Don’t Play 
3 IF Wind=Slight  AND Weather=Rainy THEN  

Decision=Play 
4 IF Wind=Strong AND Weather=Rainy THEN  

Decision=Don’t Play   
5 IF Humidity=Normal AND Weather=Sunny  THEN  

Decision=Play 
 

IV. CONCLUSION 
 
In this section, REX-2 algorithm, which adapts the 
covering approach to generate rules using the entropy, 
is compared with other algorithms by using different 
example sets.   
 
IV.1. Comparison of REX-2 with other algorithms, 
using the IRIS example set 
 
The rules generated by the REX-1, REX-2, Rules-3, 
ID3 and Rules-3 Plus algorithms using the IRIS 
example set are given in Table 7a, 7b, 7c, 7d and 7e, 
respectively.   

 
Table 7a. Rules generated by REX-1 (Iris example set) 

Rule Rule Description 
1 IF  1.3PW<1.7 AND  3.95PL<4.93 THEN  IRIS=Iris-

versicolor  
2 IF  0PW<0.51 THEN  IRIS =Iris-setosa  
3 IF  1.7PW<2.1 THEN  IRIS =Iris-virginica 
4 IF  0.9PW<1.3 THEN  IRIS =Iris-versicolor  
5 IF  2.1PW<2.5 THEN  IRIS =Iris-virginica 
6 IF  1PL<1.98 THEN  IRIS=Iris-setosa  
7 IF  4.93PL<5.91 AND  2.8SW<3.2 THEN  IRIS =Iris-

virginica 
8 IF  1.3PW<1.7 AND  2.4SW<2.8 THEN  IRIS =Iris-

versicolor 
 

Table 7b. Rules generated by REX-2 (IRIS data set) 

Rule Rule Description 
1 IF  1PL<1.98 THEN  IRIS=Iris-setosa 
2 IF  1.7PW<2.1 THEN  IRIS =Iris-virginica 
3 IF  0.9PW<1.3 THEN  IRIS =Iris-versicolor 
4 IF  2.1PW<2.5 THEN  IRIS  =Iris-virginica 

5 IF  3.95PL<4.93 AND  1.3PW<1.7 THEN  IRIS  
=Iris-versicolor 

6 IF  4.93PL<5.91 AND  2.8SW<3.2 THEN  IRIS =Iris-
virginica 

7 IF  1.3PW<1.7 AND  2.4SW<2.8 THEN  IRIS =Iris-
versicolor 
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Table 7c. Rules generated by RULES-3 (Iris example set) 

Rule Rule Description 
1 IF  6.56SL<7.13 AND  3.95PL<4.93 THEN  IRIS=Iris-

versicolor  
2 IF  5.91PL<6.9 THEN IRIS =Iris-virginica 
3 IF  0.9PW<1.3 THEN IRIS =Iris-versicolor 
4 IF  4.93PL<5.91 THEN IRIS =Iris-virginica  
5 IF  6SL<6.56 AND 3.95PL<4.93 THEN IRIS =Iris-

versicolor 
6 IF  4.86SL<5.43 AND  3.95PL<4.93 THEN  IRIS =Iris-

virginica 
7 IF  1PL<1.98 THEN IRIS =Iris-setosa 
8 IF  2.96PL<3.95 THEN  IRIS =Iris-versicolor 
9 IF  5.43SL<6 AND  1.3PW<1.7 THEN  IRIS =Iris-

versicolor 
10 IF  5.43SL<6 AND  3.2SW<3.6 THEN  IRIS =Iris-

versicolor 
11 IF  2.8SW<3.2 AND 1.7PW<2.1 THEN  IRIS =Iris-

virginica 
 

Table 7d. Rules generated by ID3 (Iris example set) 

Rule Rule Description 
1 IF  1PL<1.98 THEN  IRIS =Iris-setosa  
2 IF  4.93PL<5.91 THEN  IRIS =Iris-virginica 
3 IF  5.91PL<6.9 THEN  IRIS =Iris-virginica 
4 IF  3.95PL<4.93 AND  1.3PW<1.7  THEN  IRIS 

=Iris-versicolor 
5 IF  3.95PL<4.93 AND  0.9PW<1.3  THEN  IRIS 

=Iris-versicolor 
6 IF  3.95PL<4.93 AND  1.7PW<2.1  AND  

2.4SW<2.8  THEN  IRIS =Iris-virg. 
7 IF  3.95PL<4.93 AND  1.7PW<2.1  AND 

3.2SW<3.6  THEN  IRIS =Iris-versi. 
8 IF  2.96PL<3.95 THEN  IRIS=Iris-versicolor  

 
Tablo 7e. Rules generated by Rules-3 Plus (Iris example set)  

Rule Rule Description 
1 IF  1PL<1.98 THEN  IRIS=Iris-setosa  
2 IF  3.95PL<4.93 AND 1.3PW<1.7  THEN  IRIS =Iris-

versicolor 
3 IF  5.91PL<6.9 THEN  IRIS =Iris-virginica 
4 IF  4.93PL<5.91 THEN  IRIS =Iris-virginica 
5 IF  2.4SW<2.8 AND 1.7PW<2.1 THEN  IRIS =Iris-

virginica 
6 IF  2.96PL<3.95 THEN  IRIS =Iris-versicolor 
7 IF  0.9PW<1.3 THEN  IRIS =Iris-versiolor 
8 IF  2.1PW<1.5 THEN  IRIS =Iris-virginica 
9 IF  3.2SW<3.6 AND 3.95PL<4.93 THEN  IRIS =Iris-

versicolor 
10 IF  2.8SW<3.2 AND 1.7PW<2.1 THEN  IRIS =Iris-

virginica 

 
It should be noted that while the number of rules and 
conditions generated by REX-1 was 8 and 11, 
respectively, REX-2 generated 7 rules and 10 
conditions. On the other hand, ID3 produced 8 rules 
and 14 conditions. The algorithms ID3, Rules-3, 
Rules-3 Plus, Rules-4 and REX-1 were compared in 
terms of the number of rules and conditions 
generated. The results are given in Table 8.  
 

 
 
 

 
 

Table 8. Number of rules and the mean of conditions per a rule  
(IRIS example set) 

Algorithm Number of  
Rules 

Number of  
Conditions 

RULES-3 11 17 
RULES-3 PLUS 10 14 
RULES-4 9 12 
ID3 8 14 
REX-1 8 11 
REX-2 7 10 

 
Compared with RULES family algorithms, REX-1 
and REX-2 generated fewer rules and conditions. In 
addition, using the IRIS example set, the rate of 
efficiency in rule generation was 93.60%, 93.75% and 
100% for Rules-4[9, 16], REX-1, and REX-2; 
respectively.    
 
IV.2. Comparison of performance analyses of 
REX-2 with TDIDT and PRISM algorithms 
 
In this section, we give some information on the test 
results of REX-2 with TDIDT and PRISM 
algorithms[17]. We use Monk1, Monk2, Monk3 and 
Soybean example sets and their testing data sets. The 
attributes of Monk data sets derived from real world 
problems are given in Table 10. Soybean data sets 
[14, 16] consist of 683 examples, 35 Attributes, and 
19 classes. The results obtained with REX-2, TDIDT 
and PRISM algorithms using example sets of Monk1, 
Monk2, Monk3 and Soybean are presented in Table 
9[17].  
 

Table 9. Results obtained with the REX-2, TDIDT and PRISM 
algorithms 

Example Set TDIDT PRISM REX-2 
Monk1 46 25 21 
Monk2 87 73 83 
Monk3 28 26 24 
Soybean 109 107 98 
Ps : INDUCED was used to obtain data from TDIDT and PRISM algorithms. 
 
Mean number of conditions per a rule was obtained 
by the total number of conditions divided by the 
number of rules. It is seen that TDIDT algorithm 
generated the highest number of rules, compared with 
the other algorithms. The number of rules for TDIDT, 
PRISM and REX-2 are 270, 231 and 226, 
respectively.  
Another preferred method of algorithm comparison is 
using the testing example sets. These sets are used to 
determine the rate of accuracy using the generated 
rules. That is, they test the results generated by an 
algorithm using an undefined example. Testing sets 
are obtained from the original testing sets. The rate of 
accuracy at the end of the tests is given in Table 
10[18].  
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Table 10. Comparison of Rate of Accuracy using  
Testing Example Sets 

Example  
Set 

Number of  
Examples TDIDT PRISM REX-2 

Monk1 36 75.00% 77.78% 100.00% 
Monk2 52 46.15% 53.85% 78.80% 
Monk3 36 91.67% 83.33% 83.33% 
Soybean 204 85.78% 84.80% 97.06% 
 
Table 9 indicates that all of the algorithms, except 
TDIDT, produce almost the same results. However, 
the results obtained using the testing sets in Table 10 
show that the introduced algorithm, REX-2, yields a 
very high rate of accuracy. One of the reasons for 
such a high rate may be the selection of attributes 
based on the entropy and information gain values.   
 

 
 

V. DISCUSSION 
 
Algorithms using the covering approach generate 
rules by performing only some search methods in the 
example sets. On the other hand, the algorithms 
benefiting from the divide-and-conquer approach 
generate a decision tree based on the entropy value 
and, then, induce rules out of the decision tree. 
Thanks to that feature, decision tree algorithms are 
able to generate a greater number of rules. Yet, some 
decision tree algorithms employ a technique called 
pruning which eliminates some unnecessary rules and 
thereby, resulting in a fewer number of generated 
rules [19]. As REX-2 algorithm uses both the 
covering approach and the entropy value and does not 
perform the pruning technique, it is capable of 
generating fewer rules and classifying any given 
example set with a higher rate of efficiency.  
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