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Abstract- Multi-sensor navigation systems involving satellite-
based and inertial sensors are widely adopted in aviation to 
improve the stand-alone navigation solution for a number of 
mission- and safety-critical applications. However such 
integrated Navigation and Guidance Systems (NGS) do not 
meet the required level of performances in all flight phases, 
specifically for precision approach and landing tasks. In this 
paper an innovative Unscented Kalman Filter (UKF) based 
NGS architecture for small-to-medium size Unmanned Aircraft 
(UA) is presented and compared with a standard Extended 
Kalman Filter (EKF) based design. These systems are based on 
a novel integration architecture exploiting state-of-the-art and 
low-cost sensors such as Global Navigation Satellite Systems 
(GNSS), Micro-Electro-Mechanical System (MEMS) based 
Inertial Measurement Unit (IMU) and Vision Based Navigation 
(VBN) sensors. A key novelty aspect of this architecture is the 
adoption of Aircraft Dynamics Models (ADM) to compensate 
for the MEMS-IMU sensor shortcomings in high-dynamics 
attitude determination tasks. Furthermore, the ADM 
measurements are pre-filtered by an UKF so as to increase the 
ADM validity time in the UKF based system. The 
improvement in Position, Velocity and Attitude (PVA) 
measurements is due to the accurate modeling of aircraft 
dynamics and integration of VBN sensors. Based on the 
mathematical models described, the UKF based VBN-IMU-
GNSS-ADM (U-VIGA) is implemented and compared with 
the EKF based system (E-VIGA) in a small UA integration 
scheme exploring a representative cross-section of the 
operational flight envelope, including high dynamics 
manoeuvres and CAT-I to CAT-III precision approach tasks. 
Simulation of the U-VIGA system shows improved results 
when compared to E-VIGA, owing to an increase in the 
validity time of the ADM solution for all flight phases. The 
proposed NGS architectures are compatible with the Required 
Navigation Performance (RNP) specified in the various UA 
flight phases, including precision approach tasks. 

Keywords-Unmanned Aircraft,Navigation and Guidance 

System, GNSS, Vision-based Sensors 

 

I. INTRODUCTION 

The global perspective driving Unmanned Aircraft (UA) 
Research and Development (R&D) is primarily aimed at 
addressing its integration aspects into the non-segregated 

airspace [16]. A number of integration solutions are being 
proposed and implemented to exploit the unique operational 
capabilities of current and future UA for a variety of research, 
civil and military applications. In order to fulfill the 
requirement of UA to routinely access and operate in all classes 
of airspace, a roadmap is envisaged by the International Civil 
Aviation Organization (ICAO) as part of Aviation System 
Block Upgrades (ASBU) [3]. Initial integration is envisaged by 
implementing basic procedures and functions including Detect-
and-Avoid (DAA) functions. UA integration in traffic is 
foreseen by the implementation of refined procedures that 
would cover lost links as well as enhanced DAA functions 
(both cooperative and non-cooperative) with higher degree of 
automation and hence meeting the required level of integrity. 
Successively, UA transport management will involve the 
implementation of UA operations on the airport surface and in 
commercial airspace similar to conventionally piloted aircraft. 
Continuous airworthiness of UA is required for operating 
drones in unison with manned aircraft. Significant outcomes 
are also expected from novel Communication, Navigation, 
Surveillance/Air Traffic Management (CNS/ATM) systems, in 
line with the large-scale and regional ATM modernisation 
programmes including Single European Sky ATM Research 
(SESAR) and Next Generation Air Transportation System 
(NextGen). The key enabling elements required for the 
evolution of CNS/ATM and Avionics (CNS+A) framework 
have been identified as part of these programmes [5, 23]. High-
integrity airborne and ground-based integrated Navigation and 
Guidance Systems (NGS) that include fail-safe architecture 
designs are required to meet the Required Navigation 
Performance (RNP) levels. Both Line-of-Sight (LOS) and 
Beyond-Line-of-Sight (BLOS) secure and safe communication 
links are essential for the UA to maintain continuous contact 
with the Ground Control Station (GCS). Enhanced surveillance 
solutions based on Automatic Dependent Surveillance-
Broadcast (ADS-B) system and Traffic Collision Avoidance 
System (TCAS) are required for addressing cooperative DAA 
functions. The requirements for integration of UA into non-
segregated airspace are outlined in Figure 1. The key 
contribution of the paper is on proposing enhanced navigation 
solutions (highlighted in Fig. 1) enabling such integration. 
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Figure 1.  Requirements for integration of UA into non-segregated airspace 

 

II. UA NAVIGATION  

In order to obtain an effective separation between manned 
aircraft and UA, the Performance Based Navigation (PBN) 
approach enforces a set of Required Navigation Performance 
(RNP) standards related to the different flight phases. The 
required RNP accuracies and alarm limits are summarised in 
Table 1 [10] and specific RNP values for the approach phase 
are shown in Table 2 [4]. 

TABLE I.  NAVIGATION REQUIREMENTS FOR DIFFERENT FLIGHT PHASES 

RNP/RNAV 

Levels 
Flight Phase Accuracy 

Alarm 

Limit 

RNAV 10 En route 10 NM 20 NM 

RNAV 10 En route, arrival 5 NM 10 NM 

RNAV 2 En route, arrival, departure 2 NM 4 NM 

RNAV 1 
En route, arrival, approach, 

departure 
1 NM 2 NM 

RNP 4 En route 4 NM 8 NM 

Basic RNP 1 Arrival, approach, departure 1 NM 2 NM 

RNP APCH Final approach 0.3 NM 0.6 NM 

 
The PBN concept specifies that aircraft RNP and area 

navigation (RNAV) performance requirements are defined in 
terms of accuracy, integrity, availability and continuity, and it 
is necessary to meet the accuracy levels [11]. These navigation 
specifications are defined at a sufficient level of detail in order 
to facilitate global harmonization by providing specific 
implementation guidance for national aviation regulators and 
operators. The required navigation performances are in turn 
translated to technical requirements, which aid in the 
determination of specific airborne sensors that can be 
employed onboard the UA. The UA sensor requirements 
dictate the following: physical characteristics of the sensors 
including size, weight and volume, support requirements such 
as electrical power, accuracy and precision.  

 

TABLE II.  NAVIGATION REQUIREMENTS FOR APPROACH PHASE 

RNP/ 

RNAV 

Levels 

Operations in Approach Phase 
Accu-

racy  

Alarm 

Limit  

RNP 1 Initial/Intermediate approach 1 NM 2 NM 

RNP 0.5 
Initial/Intermediate/Final approach 

[Supports limited Category I minima] 
0.5 NM 1 NM 

RNP 0.3 
Initial/Intermediate/Final approach 

[Supports limited Category I minima] 
0.3 NM 0.6 NM 

RNP 0.3 /                         
125 ft 

Initial/Intermediate/Final approach 
with specified barometric vertical 

guidance                                                
[Supports limited Category I minima] 

0.3 NM / 
125 ft 

0.6  NM /  
250 ft 

RNP 0.03 /                       

45 ft 

Final approach with specified vertical 
guidance [Supports Category I 

minima] 

0.03 NM 

/ 45 ft 

0.06 NM /   

90 ft 

RNP 0.01 /                            

15 ft 

Final approach with specified vertical 
guidance                                               

[Supports Category I/II minima] 

0.01 NM 

/ 15 ft 

0.02 NM /   

30 ft 

RNP 0.003 

/                        

15 ft 

Final approach with specified vertical 
guidance                                               

[Supports Category I/II/III minima] 

0.003 

NM / 15 

ft 

0.006 NM / 
30 ft 

 
The selection of the navigation sensors is based on the 

requirements of low-cost, low-weight/low-volume sensors 
capable of providing the required level of performance in all 
flight phases of a small-to-medium size UA including high 
dynamics manoeuvres. Global Navigation Satellite System 
(GNSS) and Micro-Electro-Mechanical System (MEMS) based 
Inertial Measuring Unit (IMU) are a highly synergistic 
combination of navigation sensors capable of providing an 
accurate navigation state vector. GNSS provides a more 
consistent Position, Velocity and Attitude (PVA) data as well 
as time information. Since the Inertial Navigation System 
(INS) measurements are only accurate for a short period of 
time and drift gradually, they are augmented with the GNSS 
estimate values. In the case of small-to-medium size UA, 
Micro-Electro-Mechanical System (MEMS) based IMU 
sensors are employed due to its low-cost and low-weight 
characteristics. The limiting factor of MEMS based IMU is the 
large sensor errors rapidly degrade the navigation performance 
at an exponential rate. These error coefficients can be used 
further in the Kalman filter for better navigation performance 
and in the Doppler frequency estimate for faster acquisition 
during an event of GNSS signal loss or outage [30]. The most 
crucial aspect, if one relies on an inertial system for air 
navigation, is the determination of correction factors for 
providing the Most Probable Position (MPP). The recent 
advances in the field of electro-optics have made Vision Based 
Navigation (VBN) a viable option for increasing the positional 
accuracy in UA applications especially for precision approach 
and landing [2]. Vision-based methods provide cost effective 
solutions and are also not subject to the same limitations as 
GNSS/INS sensors. Additionally, the solution provided by 
VBN sensors are self-contained and autonomous, which 
enables them to be used as an alternative to more traditional 
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sensors including INS and GNSS [24]. Additionally, an 
Aircraft Dynamics Models (ADM) is used to compensate for 
the VBN and MEMS-IMU sensor shortcomings experienced in 
high-dynamics attitude determination tasks. The ADM virtual 
sensor is essentially a Knowledge-Based Module (KBM), 
which is used to augment the navigation state vector by 
predicting the UA flight dynamics. The ADM employs either a 
three-degree-of-freedom (3-DoF) or a six-degree-of-freedom 
(6-DoF) variable mass model with suitable controls and 
constraints applied in the different phases of flight. 

  

III. MULTI-SENSOR DATA FUSION 

The multi-sensor navigation system processes the 
navigation sensor information and provides an estimate on 
PVA from a sequence of measurements provided by the 
sensors. The INS is prone to an accumulation of unbounded 
errors in the navigation variables as a function of time or 
distance travelled. GNSS relies on information received from 
off-board components and is susceptible to intentional or 
unintentional Radio Frequency Interference (RFI) including 
jamming and spoofing [24]. The ADM is prone to rapid 
divergence due to the accumulation of errors in the obtained 
PVA parameters. Hence effective data-fusion algorithms are 
developed to address the shortcomings.  As a result of 
extensive research activities performed based on a number of 
NGS, it was observed that the image processing frontend was 
susceptible to false detection of the horizon if any other strong 
edges were present in the image [25-27]. Therefore, an 
Extended Kalman Filter (EKF) was implemented to filter out 
these incorrect results [27]. The ADM is also used to 
compensate for the MEMS-IMU sensor shortcomings 
experienced in high-dynamics attitude determination tasks. The 
EKF is employed for a number of applications including 
missile [18, 21], feature [9, 17], and vision based tracking [7, 
8], data fusion/integration [27, 28], improved navigation [6, 27, 
28], and robotic control [20]. The EKF operates by 
approximating the state distribution as a Gaussian Random 
Variable (GRV) and then propagating it through the first-order 
linearization of the nonlinear system [29]. The EKF accounts 
for nonlinearities by linearizing the system about its last-known 
best estimate with the assumption that the error incurred by 
neglecting the higher-order terms is small in comparison to the 
first-order terms [29]. The EKF is a suboptimal nonlinear filter 
due to the truncation of the higher-order terms when linearizing 
the system [29]. The drawback in adopting an EKF is the 
complexity involved in the derivation of the Jacobian matrices 
and the linear approximations of the nonlinear functions. 
Furthermore, the accuracy of propagated mean and covariance 
is limited to first order, since the filter employs a linearization 
method based on the first-order truncated Taylor series [14]. 
The original UKF was first developed by Julier et al. [22] and 
modified into a number of different algorithms successively. 
The idea behind modifying the EKF to the UKF is because 
recent studies have suggested that implementing the EKF gives 
rise to a number of performance flaws, where most deficiencies 
are succinctly addressed by the UKF [15]. The UKF 
overcomes the limitations of the EKF. Sigma-point Kalman 
Filters (SPKFs), such as the unscented filter, provide 

derivative-free higher-order approximations by approximating 
a Gaussian distribution rather than approximating an arbitrary 
nonlinear function as the EKF does. Table 3 lists the merits, 
demerits, resultant ADM validity time and processing 
mechanisms employed in the proposed NGS architectures. 

 

TABLE III.  COMPARISON OF EXTENDED AND UNSCENTED KALMAN 

FILTERS 

 EKF UKF 

Advantages 

Reliable, proven, 

computationally fast and 

highly efficient 

Derivative free (No 

Jacobeans needed), 

simple and better, better 
approximation of 

nonlinear models,  better 

linearization than EKF, 
higher degree of accuracy 

in first two terms of 

Taylor expansion 

Disadvantages 

Use of Jacobeans, 
complex, less optimal, 

diverges if nonlinearities 

are high 

Performance degrades 

with very high 
nonlinearities 

ADM validity time  Medium High 

Processing Main processor Main and pre-processor 

 
 

In case of navigation applications, the UKF is more robust 
and accurate than EKF and provides better convergence 
characteristics. The nonlinear transformations of sigma points 
(mean values) are intended to be an estimation of the posterior 
distribution, the moments of which can then be derived from 
the transformed samples. This transformation is referred to as 
the Unscented Transform (UT) and allows the UKF to capture 
first and second order terms of the nonlinear system. These 
sample points capture the mean and covariance accurately up 
to the third order and it is possible to reduce errors in the 
higher-order terms as well. Additionally, because no explicit 
Jacobian or Hessian calculations are necessary, the UKF is 
easier to implement.  

 
The UKF is classified into [13]: 

 Additive UKF that reduces the order and subsequently the 

number of mathematical calculations required in each 

iteration, without using the augmented states of the 

traditional UKF. This filter is computationally efficient 

and hence adopted in real-time systems. 

 Square-root UKF that is used to prevent numerical 

instabilities to which the algorithm is exposed, being 

necessary to conserve the covariance matrix of the state 

errors as semi-defined positive.  

 Spherical simplex UKF that utilizes an alternative criterion 

for selecting a minimum set of sigma points. This variant 
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overcomes a key drawback of the UKF, which is the 

relative poor execution speed when compared to EKF. 

 
The UT process is based on a sequence of tasks: 

computation of a set of sigma points, assignment of weights to 
each sigma point, transformation of the sigma point through a 
nonlinear function and computation of the Gaussian weighted 
points. As depicted in Figure 2, the sigma points are obtained 
based on the mean and covariance values and the UT process 
transforms the sigma points to a new set.   

 

 

 

 

 

 

 

 

 

Figure 2.  Sigma points and transformed sigma points 

 

An enhanced NGS concept is developed by implementing 
an UKF, which specifically addresses the corrections required 
for navigation errors of the 6-DoF dynamics model as 
illustrated in Figure 3. In this low-cost NGS, the information 
from a number of aircraft sensors are fused into a federated 
UKF architecture and thus providing additional information to 
increase the accuracy of the state vector. Stemming from [26, 
27], a number of additions have been proposed in the novel 
multi-sensor data fusion architecture to enhance its overall 
performance. The selection employs two state-of-the-art 
physical sensors: MEMS-based INS and GNSS. The ADM acts 
as a virtual sensor and also operates in parallel with the 
centralised UKF. The error analysis blocks assimilate 
information from the primary sensors and compares the errors 
with that of the navigation solution obtained from the virtual 
sensor. Additionally, the UKF is also used to pre-process the 
ADM navigation solution. The pre-filtering of the ADM 
measurements leads to an improvement of the overall PVA 
error budget and specifically increases the validity time of the 
ADM solution. The centralised UKF, also known as the master 
UKF, is the central component of the proposed architecture and 
is used to fuse the navigation sensor data to obtain the 
navigation solution.  
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Figure 3.  UKF NGS architecture 

 

IV. MATHEMATICAL MODELS 

The multi-sensor data fusion architecture is based on a 
federated architecture. The process model is based on a set of 
sigma points, which are selectively chosen for improving the 
performance of the data fusion process. The sample value 
equations are given below: 

                                         (1) 

       (√(   )   )                    (2) 

       (√(   )   )                    (3) 

where   is the initial mean of the sigma points (sample values), 
    is the initial covariance matrix,   is the mean value,   is 
the index value given by          ,   is the integer scaling 
factor and   is the outer value.   is introduced as a tuning 
parameter for the calculation of the sigma points. The 
algorithm is designed to sample the mean and covariance of an 
arbitrary function that satisfies its state variable and follows a 
normal distribution. The nonlinear function is applied to each 
sigma point, which in turn yields a cloud of transformed points 
and the statistics of the transformed points. Since the problem 
of statistical convergence is not a substantial drawback, higher 
order information about the distribution can be captured using 
only a very small number of points [19].  The UT process is 
described by introducing a random variable x (dimension n) 
and is assumed to be propagated through a nonlinear function, 
   ( )  and   is represented by the mean and covariance 
values. At the end of this process, a valid selection of sigma 
points is obtained. The transformed points are given a 
weighting known as sample weight that are given by: 

 

   
 

   
                                    (4) 

     
 

 (   )
                                (5) 

       
 

 (   )
                              (6) 

 

Sigma Points: Blue 

Mean: Black 

Covariance: Red circumference 

Transformed Sigma Points: Orange 
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UT 
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where   is the initial weight. The sample values attained 
from the measurements are fed into the UKF. In the equations 

above (√(   )   )  is equal to    which is a row vector. 

These values are obtained from the matrix     (   )  , 
where   is an arbitrary constant. These sigma vectors are 
propagated through another nonlinear function     (  )  The 
mean and covariance of    ( ), are calculated using: 

 
   ∑    (  )

    
                                (7) 

    

   ∑     { (  )    } { (  )    }
     

               (8) 

 
The weights are assumed as constant for each of the sigma 

points when the mean and covariance are calculated. The sigma 
points and weights satisfy the following equations:  

 

   ∑     
    
                                  (9) 

 

   ∑   {     }{     }
     

                 (10) 
 

The sigma points and statistical properties are obtained 
from the state variables. The mean and covariance are obtained 
from the transformed result of the sigma points. The 
transformation process is listed below: 

 The chosen sigma points    are selected based on the mean 

and covariance of  .  

 The sigma points are then transformed through the 

function  ( ). 
 The weighted mean and covariance are calculated with the 

new sigma points  (  ). 
 Once these steps are carried out the mean and covariance 

of  ( )values are what remains. 

 
Once the UT is processed, the state variable is processed 

through the UKF loop. The first step in the transformation 
process is to use the time-update equations to transform the 
sigma points, this step is also known as the prediction step. 
These updates are performed for each time step         . 
The sigma points are computed as follows: 

 

     {    (    )}
                              (11) 

     { ̂     ̂            ̂         }            (12) 

where   is the lower triangular matrix of the Cholesky 
factorisation S and   is the control parameter of the dispersion 
distance from the mean estimate in the computation of the 
sigma point matrix X. The time-update equations, which are 
used to transform the sigma points, are given by: 

 

      
    (         )                            (13) 

 ̂ 
  ∑           

   
                                (14) 

  
  ∑   

( )
(        

   ̂ 
 )(        

   ̂ 
 )

   
        (15) 

Furthermore, once the time-update has been processed, the 
measurements are also updated given by:  

 

         ̃  ̃ 
                                   (16) 

 ̂   ̂ 
   (    ̂ 

 )                            (17) 

     
     ̃  ̃  

                           (18) 

  
  ∑   

( )
(        

   ̂ 
 )(        

   ̂ 
 )

   
          (19) 

In contrast to the EKF, it can be seen in Figure 4 that no 
computation of Jacobians or Hessians are in the UKF algorithm 
and neither are they necessary to be implemented. The UKF 
algorithm is used for both the master Kalman filter and the 
ADM. The Aerosim blockset, which is a MATLAB

TM
 and 

Simulink library of components for rapid development of 
nonlinear 3-DoF and 6-DoF aircraft dynamics models, is 
adopted to realise the ADM. In addition to aircraft dynamics, 
the blockset also includes environment models such as standard 
atmosphere, background wind, turbulence, and the Earth 
models (geoid reference, gravity and magnetic field). The 
position of the UA is determined by the 6-DoF geodetic 
nonlinear equations of motion in scalar form given by:  

 

 ̇  (        )  (                      )  
(                     )                       (20) 

 

 ̇  (        )  (                     )  
(                      )                   (21) 

 

 ̇  (     )  (        )  (        )       (22) 
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Figure 4.  UKF process 

 

V. NAVIGATION AND GUIDANCE SYSTEM DESIGN AND 

SIMULATION 

A number of integrated navigation system architectures 
were defined as part of earlier research activities; including 
EKF based VBN-IMU-GNSS (E-VIG) and VBN-IMU-GNSS-
ADM (E-VIGA) and VBN-IMU-GNSS-GAD (E-VIGGA) [26, 
27] systems. The E-VIG architecture uses VBN at 20 Hz and 
GPS at 1 Hz to augment the MEMS-IMU running at 100 Hz. 
The E-VIGA architecture includes the ADM (computations 
performed at 100 Hz) to provide attitude channel augmentation 
whereas the E-VIGGA architecture includes GNSS to provide 
attitude channel augmentation. The corresponding E-VIG, E-
VIGA and E-VIGGA integrated navigation modes were 
simulated using MATLAB

TM
 covering all relevant flight 

phases of an AEROSONDE UA (straight climb, straight-and-
level flight, level turn, climb/descend turn, straight descent, 
etc.). The navigation system outputs were fed to a hybrid 
Fuzzy-logic/PID controller designed for the AEROSONDE 
UA and capable of operating with stand-alone VBN, as well as 
with other sensors data. In the E-VIGA architecture the INS 
provides measurements from gyroscopes and accelerometers 
which are fed to a navigation processor. GNSS provides raw 
pseudorange measurements which are processed by a filter to 

obtain position and velocity data. The INS position and 
velocity provided by the navigation processor are compared to 
the GNSS data to form the measurement input of EKF. 
Additionally, in this case, the attitude data provided by the 
ADM and the INS are compared to feed the EKF at 100 Hz, 
and the attitude data provided by the vision based sensors and 
INS are compared at 20 Hz and input to the EKF. The EKF 
provides estimations of PVA errors, which are removed from 
the INS measurements to obtain the corrected PVA states. 
Again, the corrected PVA and estimates of accelerometer and 
gyroscope biases are used to update INS raw measurements. 
The attitude best estimate is compared with the INS attitude to 
obtain the corrected attitude. In the evolution of the E-VIGA 
architecture, the EKF is replaced with UKF as the main 
processor in U-VIGA and also adopted to pre-process the 
ADM navigation solution. The pre-filtering of the ADM virtual 
sensor measurements results in achieving reduction of the 
overall position and attitude error budget and importantly 
considerable reduction in the ADM re-initialisation time. PVA 
measurements are obtained as state vectors from both the 
centralised UKF and ADM/UKF and are compared in an error 
analysis module. The U-VIGA architecture is illustrated in 
Figure 5.  
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Figure 5.  U-VIGA system architecture 

 

The E-VIGA and U-VIGA architectures were tested by 
simulation in an appropriate sequence of high dynamics flight 
manoeuvres representative of the AEROSONDE UA 
operational flight envelope. The duration of the simulation is 
750 s. The 3D trajectory plot of the flight phases followed by 
the AEROSONDE UA is shown in Figure 6. 

 

 
 

Figure 6.  3D trajectory plot of UA flight phases. 

 
The position and attitude error time histories obtained in U-

VIGA system are shown in Figure 7 and Figure 8 respectively. 
A comparison is made between E-VIGA and U-VIGA position 
and attitude errors. It is inferred that the adoption of UKF 
provides substantial improvement to the obtained navigation 
solution.  

 

 

 
 

 
 

 
 

Figure 7.  U-VIGA position error time histories. 
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The PVA best estimates of the two NGS architectures are 
obtained and the associated error statistics (mean, μ and 
standard deviation, σ) are calculated.  

 

            

 

 

Figure 8.  U-VIGA attitude error time histories. 

 

The ADM validity times for the estimated position error are 
illustrated in Figure 9.  

 

 
Figure 9.  Comparison of ADM validity times. 

 

The E-VIGA NGS system is prone to rapid divergence and 
its optimal time for re-initialisation is in the order of 20 
seconds. The U-VIGA NGS system shows considerable 
improvement in the horizontal and vertical positions. 
Additionally, the U-VIGA system demonstrates promising 
results in the performance of the modified ADM. By applying 
an UKF to pre filter the ADM measurements, the navigational 
solution is corrected and it is useful for an extended period of 
operation. Comparing with the E-VIGA solution, a significant 
improvement of the solution validity time is obtained with the 
U-VIGA system. In particular, the validity time before the 
solution exceeds the RNP 1 threshold in the climb phase is 76 
sec and, in the final approach phase, the ADM solution exceeds 
the CAT I, CAT II and CAT III limits at 56.2 sec, 30 sec and 
20 sec respectively (the VIGA was compliant with CAT I up to 
36 sec, CAT II up to 19 sec and CAT III up to sec to 16 sec). 
The vertical channel was found to satisfy CAT III and CAT II 
requirements up to 100 sec and CAT I requirements up to 365 
sec. The position and attitude error statistics of the two NGS 
architectures are listed in Tables 4 and 5 respectively. Table 6 
lists a comparison of the E-VIGA and U-VIGA position and 
attitude horizontal and vertical accuracy (RMS-95%) with the 
required accuracy levels for precision approach as 
recommended by the International Civil Aviation Organization 
[1, 12] and the obtained results are in line with CAT II 
precision approach requirements. 

 

TABLE IV.  POSITION ERROR STATISTICS 

NGS Architecture 
North Position [m] East Position [m] Down Position [m] 

μ σ μ  μ σ 

E-VIGA 0.3652 1.9028 -0.4849 E-VIGA 0.3652 1.9028 

U-VIGA 0.4793 1.4062 -0.4064 U-VIGA 0.4793 1.4062 

 

TABLE V.  ATTITUDE ERROR STATISTICS 

NGS Architecture 
Pitch ( ) [degrees] Roll ( ) [degrees] Heading ( ) [degrees] 

μ σ μ σ μ σ 

E-VIGA 0.0052 0.0406 -0.0065 0.3138 -0.0011 0.0447 

U-VIGA 0.0051 0.0400 -0.0053 0.2197 0.0010 0.0417 
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TABLE VI.  E-VIGA AND U-VIGA POSITION ERROR STATISTICS (PRECISION APPROACH). 

Category of 

approach 

Horizontal Accuracy (m) 2D RMS - 95% Vertical Accuracy (m) RMS - 95% Down 

Required E-VIGA U-VIGA Required E-VIGA U-VIGA 

CAT I 16 

4.8 3.6 

4 

1.9 1.9 CAT II 6.9 2 

CAT III 4.1 2 

 
 

 

 

 

     

VI. CONCLUSIONS 

The research activities performed to design a low-cost and 
low-weight/volume integrated Navigation and Guidance 
System (NGS) suitable for small size UA applications were 
described. Various sensors were considered for the design of 
the NGS including GNSS and MEMS-IMUs, with 
augmentation from ADM and VBN sensors. An innovative 
low-cost and low-weight/volume integrated Navigation and 
Guidance System (NGS) architecture was introduced based on 
an Unscented Kalman Filter (UKF). While the EKF based E-
VIGA system uses unfiltered ADM data, the U-VIGA system 
employs an UKF for pre-filtering the ADM attitude solution, 
so to increase the ADM attitude solution stability (validity time 
of 65 sec before exceeding the RNP thresholds). Simulation of 
the E-VIGA integrated navigation mode showed that the 
proposed integration schemes can achieve the required 
horizontal/vertical position accuracies, with a significant 
improvement compared to stand-alone GNSS and integrated 
GNSS/INS. Compared to the E-VIGA system, the U-VIGA 
system showed an improvement of accuracy in the position and 
attitude measurements in addition to an increased ADM 
stability time. Furthermore, the integration schemes achieved 
horizontal/vertical position accuracies in line with CAT-II 
precision approach requirements. Current research activities 
are investigating novel Four Dimensional (4D) Trajectory 
Based Operations (TBO) system design for both manned and 
unmanned aircraft. Additionally, the application of alternative 
algorithms for multi-sensor data fusion and pre-processing of 
the ADM solution to further improve the validity time are 
being explored. Finally, integrity monitoring and augmentation 
functionalities for UA are being researched upon to improve 
the overall system performance. Based on preliminary results, 
it is anticipated that the multisensory integrated NGS will be 
significantly enhanced in terms of data, accuracy, continuity 
and integrity to fulfill present and likely future RNP 
requirements for a variety of UA mission- and safety-critical 
operational tasks. 
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