Buradasınız

Gözlemci Viewpoint (Seri B) Eşitleme Kavramı

The Concept of Synchronization from the Observer's Viewpoint (Series B)

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper the concept of synchronization for continuous time dynamical systems from the viewpoint of an observer is considered. It is proved that: this concept is a generalization of the notion of synchronization. It is proved that the future of the points of the set in which two dynamical systems are relative probability synchronized is the same up to the homeomorphism determined by a relative probability synchronization. The persistence of relative probability synchronization under a topological conjugate relation is deduced.
Abstract (Original Language): 
Bu makalede, sürekli zaman dinamik sistemleri itin eszamanlama kavramı bir gözlemci bakıs acısından incelenmiştir. Bu kavramın eszamanlama kavramının bir genellemesi oldugu ispatlanmıstır. itinde iki dinamik sistemin bagıl olasılık eszamanlandıgı kümenin noktalarının geleceğinin bir bagıl olasılık senkronizasyonu tarafından belirlenen homeomorfizme gore aynı oldugu ispatlanmıstır. Bağıl olasılık eszamanlamasının topolojik eslenim bagıntısı altında kararlı olduğu sonucuna varılmıstır.
255-262

REFERENCES

References: 

[1] S. Chen and J. Lu, Synchronization of an uncertain unified chaotic system via addaptive
control, Chaos, Solitons and Fractals 14 (2002), 643-647. [2] B. Kılıc and E. Bas, Complex solutions for the Fisher equation and the Benjamin-Bona-
Mahony equation, (Çankaya University Journal of Science and Engineering 7 (2010), 87-93.
262 Molaei
[3] J. Lü, G. Chen, S. Zhang and S. Celikovsky, Bridge the gap between the Lorenz system and
the Chen system, International Journal of Bifurcation and Chaos 12 (2002), 2917-2926. [4] R. A. Mashiyev, Some applications to Lebesgue points in variable exponent Lebesgue spaces,
(ankaya University Journal of Science and Engineering 7 (2010), 105-113. [5] M. R. Molaei and B. Ghazanfari, Relative probability measures, Fuzzy Sets, Rough Sets,
Multivalued Operations and Applications 1 (2008), 89-97. [6] D. B. Pourkargar and M. Shahrokhi, Optimal fuzzy synchronization of generalized Lorenz
chaotic systems, The Journal of Mathematics and Computer Science 2 (2011), 27-36. [7] M. R. Molaei, Relative semi-dynamical systems, International Journal of Uncertainty, Fuzzi-
ness and Knowledge-based Systems 12 (2004), 237-243. [8] M. R. Molaei, Observational modeling of topological spaces, Chaos, Solitons and Fractals 42
(2009), 615-619.
[9] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. [10] R. Mane, Ergodic Theory and Differentiable Dynamics, Springer-Verlag 1987. [11] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag 1982.
[12] E. N. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences 20 (1963),
130-141.
[13] J. Luü and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and
Chaos 12 (2002), 659-661.
[14] J. Luü, T. Zhou and S. Zhang, Chaos synchronization between linearly coupled chaotic systems,
Chaos, Solitons and Fractals 14 (2002), 529-541.
[15] M. R. Molaei and B. Ghazanfari, Relative entropy of relative measure preserving maps with constant observers, Journal of Dynamical Systems and Geometric Theories 5 (2007), 179-191

Thank you for copying data from http://www.arastirmax.com