[1] J. L. Deenik, T. Mcclellan, G. Uehara, M. J. Antal, & S. Campbell,
Charcoal Volatile Matter Content Influences Plant Growth and Soil
Nitrogen Transformations. Soil Science Society of America Journal, 74
(2010), 1259-1270.
[2] J. Lehman, Bioenergy in the black front. Eco. Environment. (2007) 381-387.
[3] J. Lehman. J. Gaunt and M Rodon, Biochar sequestration in terestial
ecosystem- A reviw;Mitigation and adaptation strtegies for global
change, 11 (2006) 403-427.
[4] S. Brodowski, A. Rodionov, I. Haumaier, B. Glaser, & W. Amelung,
Revised black carbon assessment using benzene polycarboxylic acids.
Organic Geochemistry, 36, (2005) 1299-1310.
[5] B. Gaser, Slash-and-char- a feasible alternatives for soil fertility
management in the central Amazon. 17th World Congress of soil
science. Bangkok Thailand (2002).
[6] J. Lehmann & G. Schroth, Nutrient leaching. Trees, crops and soil
fertility: Concepts and research methods, (2003) 151-166.
[7] W. Seifritz, Should we store carbon in charcoal. International Journal of
Hydrogen Energy, 18, (1993) 405-407.
[8] [8] Z. Z. Faizal, Commissioning of Bubbling Fluidised Bed Reactor to
Investigate the Combustion, Gasification and Pyrolysis of Biomass By-products from Bioethanol and Biodiesel Production. UoN unpublished,
(2006).
[9] C. Steiner, B. Glaser, W. G. Teixeira, J. Lehmann, W. E. H. Blum, & W.
Zech, Nitrogen retention and plant uptake on a highly weathered central
Amazonian Ferralsol amended with compost and charcoal. Journal of
Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und
Bodenkunde, 171 (2008) 893-899.
[10] [10] L. P. Novelo, N. S. L. Martinez and V. P. Garza, Bone meal
applied to soils of the coffee plantation area in Los Altos de Chipas,
Mexico (in Spanish, English summary). Terra 16 (1998) 71–77.
[11] [11] A. S. Jeng1, K. H. Trond, A. Grønlund1 and P. A. Pedersen, Meat
and bone meal as nitrogen and phosphorus fertilizer to cereals and
ryegrass Nutrient Cycling in Agro ecosystems 76 (2006)183–191.
[12] A.E. Putun, N. Ozbay, E.A. Varol, B.B. Uzun, & F. Ates, Rapid and
slow pyrolysis of pistachio shell: Effect of pyrolysis conditions on the
product yields and characterization of the liquid product. International
Journal of Energy Research, 31 (2007) 506-514.
[13] S.A. Christopher, C. I. S.D. A. A. J. G, Solid waste pyrolysis in a pilot-scale batch pyroliser. Fuel, 75 (1996) 1167-1174.
[14] Y. Tonbul, Pyrolysis of pistachio shell as a biomass. Journal of Thermal
Analysis and Calorimetry, 91 (2008) 641-647.
[15] E. Apaydin-varol, E. Putun, & A. E. Putun, Slow pyrolysis of pistachio
shell. Fuel, 86 (2007) 1892-1899.
[16] A. W. A. K. Hedden, Catalytic effect of inorganic substances on
reactivity and ignition temperature of solid fuels Ger. Chem. Eng., 3
(1980) 142-147.
[17] R, Bassilakis, R. M. Carangelo, & M.A. Wojtowicz, TG-FTIR analysis
of biomass pyrolysis. Fuel, 80 (2001) 1765-1786.
[18] Y. Shi, Y, L. Chrusciel, A. Zoulallan (Ed.) (2007) Recent progresen
genie des procedes-Numero, France, Faculty of Science and Techniques
of Nancy, (2007).
[19] B.D. Okello, T. G. O'connor, & T.P. Young, Growth, biomass estimates,
and charcoal production of Acacia drepanolobium in Laikipia, Kenya.
Forest Ecology and Management, 142, (2001) 143-153.
[20] D. Laird, P. Fleming, B. Q. Wang, R. Horton, & D. Karlen, Biochar
impact on nutrient leaching from a midwestern agricultural soil.
Geoderma, 158, 436-442.
[21] D. A. Nemtsov, & A. Zabaniotou, Mathematical modelling and
simulation approaches of agricultural residues air gasification in a
bubbling fluidized bed reactor. Chemical Engineering Journal, 143,
(2008) 10-31.
[22] C.J. Atkinson, J. D. Fitzgerald, & N. A. Hipps, Potential mechanisms for
achieving agricultural benefits from biochar application to temperate
soils: a review. Plant and Soil, 337, (2010) 1-18.
[23] L.A. German, Historical contingencies in the coevolution of
environment and livelihood: contributions to the debate on Amazonian
Black Earth. Geoderma, 111, (2003) 307-331.
[24] W.I. Woods, J.M. Mccann, The anthropogenic origin and persistence of
Amazonian Dark Earths. Yearb. . Am. Geogr., 25, (1999) 7-14.
[25] B. Glaser, J. Lehmann, & W. Zech, Ameliorating physical and chemical
properties of highly weathered soils in the tropics with charcoal - a
review. Biology and Fertility of soils, 35, (2002) 219-230.
[26] J. Lehmann, J.P.D. Silva, C. Steiner, T. Nehls, W. Zech & B. Glaser,
Nutrient availability and leaching in an archaeological Anthrosol and a
Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal
amendments. Plant and Soil, 249 (2003) 343-357.
[27] K.Y. Chan, L. Van Zwieten, I. Meszaros, A. Downie & S. Joseph,
Agronomic values of greenwaste biochar as a soil amendment.
Australian Journal of Soil Research, 45, (2007) 629-634.
[28] C. Steiner, W. G. Teixeira, J. Lehmann, T. Nehls, J. L. V. De Macedo,
W. E. H. Blum & W. Zech, Long term effects of manure, charcoal and
mineral fertilization on crop production and fertility on a highly
weathered Central Amazonian upland soil. Plant and Soil, 291 (2007)
275-290.
[29] M. J. Gundale, & T.H. Deluca, Charcoal effects on soil solution
chemistry and growth of Koeleria macrantha in the ponderosa
pine/Douglas-fir ecosystem. Biology and Fertility of soils, 43 (2007)
303-311.
[30] H. Tiessen, E. Cuevas & P. Chacon, The role of soil organic-matter in
sustaining soil fertility. Nature, 371 (1994) 783-785.
[31] R. F. H. R. Probstein, (1982) Synthetic Fuels, New York, McGraw-Hill
Book Company.
[32] B. Purevsuren, B. Avid, T. Gerelmaa, Y. Davaajav, T.J. Morgan, A.A.
Herod & R. Kandiyoti, The characterisation of tar from the pyrolysis of
animal bones. Fuel, 83, (20040 799-805.
[33] B. Manoj1*, A.G. Kunjomana Study of Stacking Structure of
Amorphous Carbon by X-Ray Diffraction Technique, Int. J.
Electrochem. Sci., 7, (2012) 3127 – 3134.
[34] J. M. Encinar, F. J. Beltran & A. Ramiro, Pyrolysis/gasification of
agricultural residues by carbon dioxide in the presence of different
additives: influence of variables. Fuel Processing Technology, 55,
(1998) 219-233.
International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 48
www.IJSEI.com Paper ID: 21213-07 ISSN: 2251-8843
[35] D. Sutton, B. Kelleher, A. Doyle & J.R. H. Ross, Investigation of nickel
supported catalysts for the upgrading of brown peat derived gasification
products. Bioresource Technology, 80 (2001) 111-116.
[36] E, Cascarosa., I, Fonts., J, M, Mesa., J, L, Sanchez. & J, Arauzo.
Characterization of the liquid and solid products obtained from the
oxidative pyrolysis of meat and bone meal in a pilot-scale fluidised bed
plant. Fuel Processing Technology, 92, (2011)1954-1962
[37] I, Fonts., M, Azuara., L, Lazaro., G, Gea., & M.B, Murillo, Gas
Chromatography Study of Sewage Sludge Pyrolysis Liquids Obtained at
Different Operational Conditions in a Fluidized Bed. Industrial &
Engineering Chemistry Research, 48, (2009a) 5907-5915.
[38] I, Fonts., E, Kuoppala & A, Oasmaa, Physicochemical Properties of
Product Liquid from Pyrolysis of Sewage Sludge. Energy & Fuels, 23,
(2009b)4121-4128.
[39] D, J, Nowakowski. & J, M, Jones, Uncatalysed and potassium-catalysed
pyrolysis of the cell-wall constituents of biomass and their model
compounds. Journal of Analytical and Applied Pyrolysis, 83, (2008) 12-25.
[40] J, A, Torres., J, Llorca., A, Casanovas., M, Dominguez., J, Salvado. &
D, Montane, Steam reforming of ethanol at moderate temperature:
Multifactorial design analysis of Ni/La2O3-Al2O3, and Fe- and Mn-promoted Co/ZnO catalysts. Journal of Power Sources, 169, (2007) 158-166.
[41] T, Nordgreen., T, Liliedahl. & K, Sjostrom, Elemental iron as a tar
breakdown catalyst in conjunction with atmospheric fluidized bed
gasification of biomass: A thermodynamic study. Energy & Fuels, 20,
(2006) 890-895.
[42] H Nicholas. Florin and T Andrew. Harris, Mechanistic study of
enhanced H2 synthesis in biomass gasifiers with in-situ co2 capture
using CaO. J environmental and energy engineering, vol 54, no 4,
(2008) 1096-1109.
[43] T , Hanaoka., T, Yoshida., S, Fujimoto., K, Kamei., M, Harada., Y,
Suzuki., H, Hatano., S, Yokoyama. & t, Minowa, Hydrogen production
from woody biomass by steam gasification using a CO2 sorbent.
Biomass & Bioenergy, 28, (2005) 63-68.
[44] C, Pfeifer., B, Puchner. & H, Hofbauer, In-situ CO2-absorption in a dual
fluidized bed biomass steam gasifier to produce a hydrogen rich syngas.
International Journal of Chemical Reactor Engineering, (2007) 5.
[45] Z, Wang., F, Wang., J, Cao. & J, Wang, Pyrolysis of pine wood in a
slowly heating fixed-bed reactor: Potassium carbonate versus calcium
hydroxide as a catalyst. Fuel Processing Technology, 91, (2010) 942-950.
[46] A. Demirbas, Biomass to charcoal, liquid, and gaseous products via
carbonization process. Energy Sources, 23, (2001a) 579-587.
[47] A. Demirbas, Carbonization ranking of selected biomass for charcoal,
liquid and gaseous products. Energy Conversion and Management, 42
(2001b) 1229-1238.
[48] W. Daud, W.S.W. Ali & M. Z. Sulaiman, Effect of carbonization
temperature on the yield and porosity of char produced from palm shell.
Journal of Chemical Technology and Biotechnology, 76 (2001) 1281-1285.
[49] S. Katyal, K. Thambimuthu & M. Valix, Carbonisation of bagasse in a
fixed bed reactor: influence of process variables on char yield and
characteristics. Renewable Energy, 28 (2003) 713-725.
[50] S. Joseph, C. Peacocke, J. Lehmann, And P. Munroe, Developing a
biochar clasification and test methods in: J. Lehmann, And S. Stephen
(Ed.) (2009) Biochar for Environmental Management: Science and
Technology, UK and USA, Earthscan, (2009) 108-126.
[51] Broido, A and M.A Nelson Char yield on pyrolysis of cellulose.
Combustion and Flame, 24, (1975) 263-268.
Thank you for copying data from http://www.arastirmax.com