[1] J.A. Adam, A simplified mathematical model of tumor growth, Mathe-
matical BioSciences, vol. 81, 1986, 229-244.
[2] J.A. Adam, A mathematical model of tumor growth II, effects of geometry
and spatial nonuniformity on stability, Mathematical BioSciences, vol 86,
1987, 183-211.
[3] A. Friedman, A hierarchy of cancer models and their mathematical chal-
lenges, Discrete and Continuous Dynamical systems, Series B, V4, no. 1,
2004.
496 L. Jaafar Belaid
[4] D. Grecu, A.S. Carstea, A.T. Grecu, A. Visinescu, Mathematical mod-
elling of tumor growth, Romanian Reports in Physics, vol. 59, no 2, 2007,
447-455.
[5] J.A. Sheratt, M.A.J. Chaplain, A new mathematical model for avascular
tumor growth, Math. Biol., vol 43, 2001, 291-312.
[6] A. Stephanou, S.R. McDougall, A.R.A. Anderson and M.A.J. Chaplain,
Mathematical modeling of flow in 2D and 3D vascular networks: appli-
cations to anti-angiogenic and chemotherapeutic drug strategies, Math.
Comp. Mod., vol 41, 2005, 1137-1156.
[7] Tiina Roose, S. Jonathan Chapman, Philip K Maini, Mathematical Mod-
els of Avascular Tumor Growth, Siam Review, vol 49, no. 2, 2007, 179-208.
[8] J.P Ward, J.R. King, Mathematical modelling of avascular tumor growth
I, IMA journal Math. Appl. Med. Biol., vol 14, no. 1, 1997, 39-69.
[9] J.P Ward, J.R. King, Mathematical modelling of avascular tumor growth
II: modelling growth saturation, IMA journal Math. Appl. Med. Biol, vol
15, 1998, 1-42.
Thank you for copying data from http://www.arastirmax.com