Buradasınız

TOZ METALURJİSİ YÖNTEMİ İLE ÜRETİLEN Fe-C-Mo-FeCr KOMPOZİTİNİN ABRASİV AŞINMA DAVRANIŞININ İNCELENMESİ

AN INVESTIGATION ON ABRASIVE WEAR BEHAVIOUR OF Fe-C-Mo-FeCr COMPOSITE PRODUCED BY POWDER METALLURGY

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this study, the effect of chromium carbide (Cr7 C3) on abrasive wear behavior of Fe-C-Mo-FeCr composite was investigated. Composite, which was produced by a powder metallurgy route was containing 3 wt.% Mo, 1.5 wt. % C and 4,8,12 wt. % FeCr with the different particle sizes. In the experiments, wear resistance of samples were determined using different loads by a pin on disc wear tester. Microstucture of samples were examined by an optical and scanning electron microscopy, EDS and X-Ray diffraction methods. The hardnesses of samples were measured in RB scale. Finally, it has been found that with the increasing particle size of reinforcing element, wear resistance decreased and with the increasing reinforcing element, the wear resistance increased.
Abstract (Original Language): 
Bu çalışmada, toz metalurjisi yöntemi ile üretilen ağırlıkça % 3 oranında Mo, % 1.5 oranında C ve farklı tane boyutlarında % 4, % 8 ve % 12 oranlarında ferrokrom tozları içeren Fe-C-Mo-FeCr kompozitinin abrasiv aşınma davranışına krom karbürün (Cr7 C3) etkisi incelenmiştir. Aşınma deneyleri farklı yükler kullanarak pim-disk aşınma cihazında yapılmıştır. Numunelerin mikroyapıları SEM, optik mikroskop, EDS ve X-Ray ile incelenmiştir. Numunelerin sertlikleri RB skalasında ölçülmüştür. Sonuç olarak, yapıdaki ferrokrom oranının artmasıyla aşınma direncinin arttığı ve ferrokrom tozlarının tane boyutu arttıkça aşınma direncinin düştüğü tespit edilmiştir.
133-140

REFERENCES

References: 

[1] Metals Handbook, Ninth Edition, American Society for Metals, 1984, p. 7
[2] j. Kazior, C. Janczur, T.Pieczonka, J. Ploszczak, Thermochemical treatment of Fe-C-Mo
alloys, Surface and Coatings Technology 151-152(2002)333-337
[3] H. Berns, Comparison of wear resistant MMC and white cast iron, Wear 254 (2003) 47-
54.
[4] M. Vardavoulias, C. Jouanny Tresy, M. Jeandin, Sliding-wear behavior of ceramic
particle-reinforced high-speed steel obtained by powder metallurgy, Wear 165 (1993)141-
149
[5] M.L. Ted Guo, C.H. Chiang, Microstructure and wear behavior of spray-formed and
conventionally cast rolls of 18 Cr-2.5 Mo-Fe alloy, Materials Science and Engineering
A326 (2002)1-10
[6] M. Vardavoulias, The role of hard second phases in the mild oxidational wear mechanism
of high-speed steel based materials, Wear 173 (1994)105-114
[7] G. Straffelini, V. Fontanari, A. Molinari, Powder Metall. 38 (1995)45
[8] M. Selecka, A. Salak, H. Danninger, The effect of boron liquid phase sintering on
properties of Ni-Mo and Cr alloyed structural steels, Journal of Materials Processing
Technology 141 (2003) 379-384.
[9] N. Candela, F. Velasco, J.M. Torralba, Fracture mechanism in sintered steels with 3.5 %
(wt.) Mo, Materials Science and Engineering A 259 (1999) 98-104.
[10] ASM International Handbook Committee, Friction, lubrication and wear technology, Vol.
18, ASM Handbook, 1992 pp. 184-190.
[11] S. Aso, S. Goto, Y. Komatsu, W. Hartono, Sliding wear of graphite crystallized chromium
white cast iron, Wear 250 (2001) 511-517.
[12] M.H.Korkut, O. Yılmaz, S. Buytoz, Effect of aging on the microstructure and toughness
of the interface zone of GTA synthesized Fe-Cr-Si-Mo-C coated low carbon steel, Surface
and Coating Technology,157 (2002)5-13.

Thank you for copying data from http://www.arastirmax.com