Buradasınız

MİMARLIKTA ORİGAMİ: MİMARİ TASARIM İÇİN YENİ BİR ARAŞTIRMA ALANI

ORIGAMICS IN ARCHITECTURE: A MEDIUM OF INQUIRY FOR DESIGN IN ARCHITECTURE

Journal Name:

Publication Year:

DOI: 
10.4305
Abstract (2. Language): 
The Japanese craft of “origami” has proved itself as being a valuable tool to develop various engineering and design applications in numerous fields. Several patterns developed by Dr. Nojima Taketoshi ranging from environmentally friendly containers (pet bottles, plastic containers, cans and et. al) to medical applications such as stents, catheters, from vehicle parts to new insulation material configurations, from robotics to education are sources of inspiration for many other research studies (Hagiwara 2008). These wide range of applications has been named by Ian Steward as “Origamics” demonstrating the interdisciplinary nature of these studies including mathematics, engineering, biology and many other possible disciplines which may use origamics (Stewart 2007). This paper aims to discuss the potentials of “origamics” in general, then in architecture, as an interface to gain cognitive experience on spatial transformations, computational design, form finding etc., and as a medium of inquiry for structural design in through the examples of kinetic or deployable structural designs in architecture.
Abstract (Original Language): 
Bu çalışmada, ‘origami’ bir öğrenme ara yüzü olarak ele alınmış ve bu bağlamda farklı disiplinlerdeki uygulamaları incelenmiştir. Benzer biçimde, mimarlık alanında bu potansiyeller araştırılmış ve örneklenmiştir. Makale kapsamında ‘mimarlıkta origami’, form strüktür ve mekânın bir arada şekillendiği güçlü bir keşfetme ortamı/aracı olarak sunulmuştur. Bu keşif sırasında üretilen şemalar/diyagramlar ise düzlem-levha ve kabukların keşfedilmesi ve tasarlanması, bir sonraki aşamada ise etkileşimli akıllı ya da edilgen sistemlerin tasarlanması, dönüşüme olanak veren kinetik yapıların geliştirilmesinde çok boyutlu bir araç olarak ele alınmıştır. Süreçte bir ara yüz olarak origaminin hem tasarım eğitimindeki çok boyutluluğu öğretmek, hem de öğrencilerin mimari tasarım projelerinde ileri morfolojik araştırmalar yapmalarını sağlamak amacıyla eğitimdeki olası kullanımlarının neler olabileceği de örneklenmiştir.
235-247

REFERENCES

References: 

BANGHAY, S. (2000) From Virtual to Physical Reality with Paper Folding,
Computational Geometry Theory and Applications (15) 161-74.
BENYUS, J. (1997) Biomimicry: Innovation Inspired by Nature, William
Morrow and Company Inc, New York.
EBARA, M. KAWAGUCHI, K. (2003) Deployable Solid: A New Folding
Structure, Forma, (18) 187-95
FOX, M. (2000) Beyond Kinetic http://robotecture.com/Papers/Pdf/
beyond.pdf (retrieved December 2009).
FOX, M., YEH, P. (2004) Intelligent kinetic system, http://kdg.mit.edu/Pdf/
iksov.pdf (retrieved August 2008).
HACHIM,C. ed. (2004) Deployable Structures in Nature: Examples,
Analysis and Realizations, IASS Symposium on Shell and Spatial
Structures - From Models to Realization, Montpellier; 190-8.
HAGIWARA, I. (2008) From Origami to Origamics, Science Japan Journal,
(July2008) 22-5.
HULL. T. ed. (2002) Origami 3: Third International Meeting of Origami
Science, Mathematics, and Education, AK Peters, Ltd.
KHADEMZADEH H.R., MAZAHERI H. (2007) Some Results to the
Huzita’s Theorems, International Mathematical Forum 2, (14), 699-
704. (http://www.m-hikari.com/imf-password2007/13-16-2007/
mazaheriIMF13-16-2007-1.pdf) (retrieved August 2008).
KOBAYASHI, H.B., KRESLING, J.F., VINCENT. V. (1998) The Geometry of
Unfolding Tree Leaves, Proceedings of Royal Society (265) 147-54.
KRISHNAN, S. Ancient Art of Origami, High Tech Gizmos, http://www.
csmonitor.com/2003/0917/p01s03-woap.html (retrieved August
2008).
LANG, R.J. (2008) “Tree Maker”, http://www.langorigami.com/science/
treemaker/ TreeMkr40.pdf (retrieved August 2008).
LANG, R. (2004) Origami: Complexity in Creases, Engineering and Science
(1) 9-19.
MAEKAWA, J (2008) Genuine Origami: 43 Mathematically-Based Models,
From Simple to Complex, Japan Publications Trading.
MITANI, J., SUZUKI, H.( 2004) Computer Aided Design for Origamic
architectures with Polygonal Representations, Proceedings of
Computer Graphics International IEEE; 1530-52.
MITANI, J. (2009) A Design Method for 3D Origami Based on Rotational
Sweep, http://www.cadanda.com/CAD_6_1__69-79.pdf (retrieved
December2009).
MIURA, K. (1994) Folds - the Basis of Origami, Symmetry: Culture and
Science (5) 13-22.
MIURA, K. (1997) Fold; its Physical and Mathematical Principles, Origami
Science and Art, Otsu, Tokyo.
OTTO, F., RASCH B. (1995) Finding Form, Towards an Architecture of the
Minimal, Deutscher Werkbund, Bayern. PELLEGRINO S., GUEST S., Solid Surface Deployable Antenna, http://
www2.eng.cam.ac.uk/ ~sdg/dstruct/ssda.html, (retrieved August
2008).
PHILLIPS, T.( 2007) Math in the Media, http://www.ams.org/
mathmedia/archive/09-2007-media.html (retrieved August 2008).
ROBBIN T., (1996) Engineering a New Architecture, Yale University Press,
London.
SORGUÇ GÖNENÇ, A., ÖZKAR, M. (2007) Workshop on Computation,
Aalborg University, School of Design, Denmark.
SOKOLOWSKY, E. (1999) Parris K. Egbert, William A. Barrett, and Kirk L.
Duffin, “Image Origami”, Proceedings of the International Conference on
Virtual Systems and Multi-Media; 14-23.
STEWARD, I. (2007) Some Assembly Needed, Nature, (448) 419, http://
www.nature.com/nature/ journal/v448/n7152/ pdf/ 448419a.pdf
(retrieved August 2008).
STELLMAN, P., ed. (2005) Kinematics and Dynamics of Nano-Structured
Origami, ASME International Mechanical Engineering Conference
and Exposition, Florida USA.
VINCENT, J., (2000) Deployable Structures Found in Nature: Potential for
Biomimicking, Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science (214) 1-10.

Thank you for copying data from http://www.arastirmax.com