Buradasınız

Stabilization of a Nonlinear Fluid Structure Interaction via Feedback Controls and Geometry of the Domain

Journal Name:

Publication Year:

Abstract (2. Language): 
Asymptotic stability of finite energy solutions to a fluid-structure interaction with a static interface in a bounded domain Ω∈ℝ
143-153

REFERENCES

References: 

[1] G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction. Part I: explicit semigroup generator and its spectral properties, Cont. Math. 440 (2007), pp. 15-54.
[2] G. Avalos and R. Triggiani, Uniform Stabilization of A coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Dis. & Cont. Dyn. Sys., 22 No. 4, (2008), 817-833.
[3] G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stoke-Lame PDE system, J. Evol. Eqns., 9 (2009), pp. 341-370.
[4] G. Avalos and R. Triggiani, Coupled parabolic-hyperbolic Stoke-Lame PDE system: limit behavior of the resolvent operator on the imaginary axis, Applicable Analysis, Vol. 88(9) (2009), pp. 1357-1396.
[5] J. M. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems, Appl. Math. Optim. 5 (1979), pp. 169-179.
[6] J. M. Ball. Stongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Am. Math. Soc. 63 (1977), pp. 370-373.
[7] J. M. Ball. On the asymptotic behavior of generalized processes, with application to nonlinear evolution equations. J. Diff. Equ. 27 (1978), pp. 224-265.
[8] V. Barbu, Z. Grujic, I. Lasiecka and A. Tuffaha, Existence of the Energy- Level Weak Solutions for a Nonlinear Fluid-Structure Intercation Model, Cont. Math. 440 (2007), pp. 55-82.
[9] V. Barbu, Z. Grujic, I. Lasiecka and A. Tuffaha Smoothness of Weak Solutions to a Nonlinear Fluid-structure Interaction Model, Indiana University Mathematics Journal 57 No. 2 (2008), pp. 1173-1207.
[10] H. Brezis. .Asymptotic behavior of some evolutionary systems, NonlinearEvol. Equ. pp. 141-154 (Academic Press, 1978).
[11] I. Chueshov and I. Lasiecka, Long tome behavior of second order evolutions with nonlinear damping. Memoires of American Mathematical Society ,vol. 195, Nr 912, 2008.
[12] R. Caputo and D. Hammer, Effects of microvillus deformability on leukocyte adhesion explored using adhesive dynamics simulations, Biophysics 92 (2002), pp. 2183-2192.
[13] D. Coutand and S. Shokller, Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal. 176 (2005), pp.25-102.
[14] Q. Du, M.D. Gunzburger, L.S. Hou, and J. Lee, Analysis of a linear fluid-structure interaction problem, Dis. Con. Dyn. Sys. 9 (2003), pp. 633-650.
[15] M. A. Fernandez and M. Moubachir, An exact Block-Newton algorithm for solving fluid-structure interaction problems, C.R. Acad. Sci Paris, Ser. I 336 (2003), pp. 681-686.
[16] I. Kukavica, A. Tuffaha, M. Ziane. Strong solutions to nonlinear fluid structure interactions, J. Diff. Equ., 247 (2009), pp. 1452-1478.
[17] I. Kukavica, A. Tuffaha, M. Ziane. Strong solutions for a fluid structure interaction system. Advances in Differential Equations, vol. 15, 3-4, pp. 231-254, 2010.
[18] I. Kukavica, A. Tuffaha, M. Ziane, Strong solutions to a Navier-Stokes-Lame system on a domain with a non-flat boundary. Nonlinearity 24(2011), no. 1, 159176.
Journal of Control Engineering and Technology (JCET)
JCET Vol. 2 Iss. 4 October 2012 PP. 143-153 www.ijcet.org ○C World Academic Publishing
153
[19] D. Khismatullin and G. Truskey, Three dimensional numericalsimulation of receptor-medicated leukocyte adhesion to surfaces. Effectsof cell deformability and viscoelasticity, Physics of Fluids 17 (2005), 031505.
[20] R. Glowinski, T. Pan, T. Hesha, D. Joseph, and J. Periaux, A fictious domain approach to the direct numerical simulation of incompressible viscuous flow past moving rigid bodies: Applications to particulate flow, J. of Comp. Phy. 169 (2001), pp. 363-426.
[21] A. Haraux. Semilinear Hyperbolic Problems in Bounded Domains, Mathematical Reports, vol. 3, Harwood Gordon Breach, 1987.
[22] A. Haraux, Decay rate of the range component of solutions to some semilinear evolution equations NoDea, vol. 13, pp. 435-445, 2006.
[23] V. Komornik, Exact Controllability by Multipliers Method, Masson, 1998
[24] J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Diff. Eqns., 50 (1983), 163-182.
[25] I. Lasiecka, Control Theory of Coupled PDE’s, CBMS-SIAM Lecture Notes, SIAM, 2002.
[26] W. Littman, Remarks on global uniqueness theorems for PDE’s. Differential Geometric Methods in Control of PDE’s. vol. 268, Contemporary Mathematics, pp. 363-371. AMS, 2000.
[27] I. Lasiecka, J. L. Lions, and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-152.
[28] I. Lasiecka, and Y. Lu Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction, Semigroup Forum, 82 (2011), pp. 61-82.
[29] I. Lasiecka and Y. Lu, Boundary Asymptotic Stabilizability of a Nonlinear Fluid Structure Interaction IEEE- CDC 46 Conference Proceedings, Atlanta 2009
[30] I. Lasiecka and Y. Lu, Interface feedback control stabilization of anonlinear fluid-structure interaction, Nonlinear Analysis 75, 1449-1460, (2012).
[31] I. Lasiecka and T. Seidman, Strong stability of elastic control systemswith dissipative saturating feedback,Systems and Control Lettersvol 48, pp. 243-252, 2003.
[32] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinearwave equations with nonlinear boundary damping, Diff. &Inte. Eqns., Vol. 6 No. 3, (1993), 507-533.
[33] I. Lasiecka and R. Triggiani, Exact controllability for the wave equation with Dirichlet - or Neumann-feedback control without geometrical conditions, Appl. Math. Optimiz., 19 (1989) 243-290.
[34] J. L. Lions, Controllabilite Exact and Stabilization de Systemes Distribues. Masson, Paris, 1988.
[35] J. P. LaSalle, Stability theory and invariance principles, Dynamical Systems Vol. 1, L. Cerasir, J. K. Hale, and J. P. LaSalle, eds., Academic Press, New York, 1976, pp. 211-222.
[36] M. Moubachir and J. Zolesio, Moving shape analysis and control: Applications to fluid structure interactions, Chapman& Hall/CRC, 2006.
[37] M. Slemrod, Weak asymptotic decay via a “relaxed invariance principle” for a wave equation with nonlinear, non-monotone damping, Proceedings of the Royal Society of Edinburgh, 113A (1989) pp. 87-97.
[38] R. Temam, Navier-Stokes Equtions, Studies in Math. and its Applications, North Holland, Amsterdam, (1977).
[39] R. Triggiani, Exact boundary controllability of

Thank you for copying data from http://www.arastirmax.com