Buradasınız

ARMUTLU YARIMADASI MANYETOTELÜRİK VERİSİNDEKİ ÜÇ BOYUTLU DENİZ ETKİSİNİN İNCELENMESİ

MODELING THE THREE DIMENSIONAL OCEAN EFFECT ON MAGNETOTELLURIC DATA AT ARMUTLU PENINSULA

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Magnetotelluric data collected at the western part of the North Anatolian Fault Zone and the two-dimensional analysis associated with them, are likely to be influenced by the “ocean effect”. Two and three dimensional forward modeling tests were performed at a geometry that is representing the western edge of the Armutlu Peninsula. The results following these tests suggested that the two dimensional inversions should depend on B-polarization rather than E-polarization for Armutlu Peninsula geometry.
Abstract (Original Language): 
Kuzey Anadolu Fayı’nın batı kesiminde gerçekleştirilen manyetotelürik ölçümlerde toplanılan verinin ve veriye ait ikiboyutlu (2B) analizlerin, yüksek elektrik iletkenliğe sahip Marmara Denizi’nden kaynaklanan deniz etkisine maruz kalacakları gözönünde bulundurularak, etkinin boyutunu tespit etmek üzere, iki-boyutlu (2B) ve üç-boyutlu (3B) düz çözüm denemeleri yapılmıştır. Buna göre Armutlu Yarımadası’nın batı kesiminde iletkenliği etkileyebilecek unsurlar sentetik yer modelleri oluşturularak sınanmışlardır. Sonuç olarak, test edilen geometride, 2B ters çözüm analizlerinin doğruluğunu arttırmak için, deniz etkisini baskın biçimde taşıdığı saptanan, E-polarizasyonu verisi yerine ağırlıklı olarak B-polarizasyonu verisinin kullanılması gerekmektedir.
65-72

REFERENCES

References: 

DEĞİNİLEN BELGELER
Armijo, R., B. Meyer, S. Navarro, G. King, A.
Barka, 2002. Asymmetric slip partitioning in the
Sea of Marmara pull-apart: a clue to propagation
processes of the North Anatolian Fault? Terra Nova,
14, No. 2, 80-86.
Cagniard, L., 1953. Basic theory of the magnetotelluric
method of geophysical prospecting: Geophysics, 18,
p. 605.
de Groot-Hedlin, C.D. and S.C. Constable, 1990.
Occam’s inversion to generate smooth, twodimensional
models from magnetotelluric data,
Geophysics, 55, 1613-1624.
Hohmann, G.W., 1983. Three-dimensional EM modeling,
Geophysical Surveys, 6, 27-53.
Honkura, Y., A.M. Işıkara, N. Oshiman, A. Ito, B.
Üçer, S. Barış, M.K. Tunçer, M. Matsushima, R.
Pektaş, C. Çelik, S.B. Tank, F. Takahashi,
M.Nakanishi, R. Yoshimura, Y. Ikeda and T.
Komut, 2000. Preliminary results of multidiscciplinary
observations before, during and after the
Kocaeli (Izmit) earthquake in the western part of the
North Anatolian Fault Zone, Earth Planets Space,
52, 293-298.
Kaya, T.,Tank, S.B.,Tunçer M.K., Rokityansky I.I.,
Tolak I., and Savchenko T., 2009. Asperity along
the North Anatolian Fault imaged by magnetotellurics
at Düzce, Turkey, Earth, Planets and Space,
v61, n 7, p 871-84.
Kaufman, A.A., and Keller, G.V., 1981. The Magnetotelluric
Sounding Method: Elsevier, Amsterdam.
Ledo, J., 2005 2-D Versus 3-D Magnetotelluric Data
Interpretation, Surveys in Geophysics, 26:511-543.
Ogawa, Y. and T. Uchida, 1996. A two-dimensional
magnetotelluric inversion assuming Gaussian static
shift, Geophys. J. Int., 126, 69-76.
Oshiman, N., R. Yoshimura, T. Kasaya, Y. Honkura,
M. Matsushima, S. Barış, C. Çelik, M.K. Tunçer,
and A. M. Işıkara, 2002. Deep resistivity structure
around the fault associated with the 1999 Kocaeli
earthquake, Turkey, in Seismotectonics in Convergent
Plate Boundary (Eds. Y. Fujinawa and A.
Yoshida), Terra Sci. Publ. Company, 293-303.
Mackie, R.L., Madden, T.R. and Wannamaker, P.E.,
1993. Three-dimensional magnetotelluric modeling
using finite difference equations – Theory and comparisons
to integral equation solutions: Geophysics,
58, 215-226.
Park, S.K. and Mackie, R.J., 1997. Crustal structure at
Nanga Parbat, Northern Pakistan, from magnetotelluric
soundings, Geophys. Res. Lett. 24, 2415-2418.
Parkinson, W.D., 1959. Direction of rapid geomagnetic
fluctuations, Geophysical Journal, 2, 1-14.
Rikitake, T., 1950. Bull. Earthquake Res., Inst. Tokyo
Univ. 28, p45, 219.
Rodi, W. and Mackie, R.L., 2001. Nonlinear conjugate
gradients algorithm for 2-D magnetotelluric
inversions, Geophysics, 66, 174-187.
Simpson and Bahr, 2005. Practical Magnetotellurics,
Cambridge University Press.
Siripunvaraporn, W. and Egbert, G., 2000. An efficient
data-subspace inversion method for 2-D
magnetotelluric data, Geophysics, 65, 3, 791-803.
Tank, S.B., Y. Honkura, Y. Ogawa, N. Oshiman,
M.K. Tunçer, M. Matsushima, C. Çelik, E. Tolak,
and A. M. Işıkara, 2003. Resistivity structure in the
western part of the fault rupture zone associated with
the 1999 İzmit earthquake and its seismogenic
implication, Earth Planets Space, 55, 437-442.
Tank, S.B., Y. Honkura, Y. Ogawa, M. Matsushima,
N. Oshiman, M.K. Tuncer, C. Celik, E. Tolak,
A.M. Isıkara, 2005. "Magnetotelluric imaging of
the fault rapture area of the 1999 Izmit (Turkey)
earthquake", Physics of the Earth and Planetary
Interiors, 150, 213, 25.
Tank, S.B., Y. Honkura, Y. Ogawa, M.K. Tuncer, N.
Oshiman, M. Matsushima, E. Tolak, 2010. Fault
Zone Conductors inferred from audio frequency
magnetotellurics, Earth Planets Space, (yayın
aşamasında).
Tikhonov, A.N., 1950, 1986. On determining electrical
characteristics of the deep layers of the Earth’s crust,
Geophysics Reprint Series, No. 5 Magnetotelluric
Methods, p. 2-3.
Ting, S.C. and Hohmann, G.W., 1981, Integral Equation
Modeling of Three-Dimensional Magnetotelluric
Response, Geophysics 46, 182-197.
Vozoff, K., 1972. The magnetotelluric method in the
exploration of sedimentary basins, Geophysics, 37,
98.
Wannamaker, P.E., Wright, P.M., Zhou, Z.X., Li,
X.B., and Zhao, J.X., 1991. Magnetotelluric transect
of long valley caldera-resistivity cross-section,
structural implications, and the limits of a 2D
analysis, Geophysics 56, 926-94.

Thank you for copying data from http://www.arastirmax.com