[1] Migdalas, A., Pardalos, M.P., and V¨arbrand,
P., Multilevel optimization: algorithm, theory
and applications. Kluwer Acadamic Publisher,
(1992).
[2] Vicente, N.L. and Calamai, H.P., Bilevel and
multilevel programming: a bibliography review.
Journal of Global Optimization, 5, 1 -
9 (1994).
[3] Hansen, P., Jaumard, B., and Savard,
G., New branch-and-bound rules for linear
bilevel programming. SIAM Journal on Scientific
and Statistical Computing, 13, 1194 -
1217 (1992).
[4] Blair, C., The computational complexity of
multi-level linear programs. Annals of Operations
Research, 34, 13 - 19 (1992).
[5] Bard, J.F., An investigation of the linear
three level programming problem. IEEE
Transactions on Systems, Man, and Cybernetics,
14, 711 – 717 (1984).
[6] Zhang, G., Lu, J., Montero, J., Zeng, Y.,
Model, solution concept, and Kth-best algorithm
for linear trilevel programming. Information
Sciences, 180, 481 - 492 (2010).
[7] Mersha, A.Y., Dempe S., Feasible direction
method for bilevel programming problem.
Optimization, 61(5), 597 - 616 (2012).
[8] G¨um¨us, Z.H., Floudas C.A., Global Optimization
of Nonlinear Bilevel Programming
Problems. Journal of Global Optimization,
20, 1 - 31 (2001).
[9] Tilahun, S.L., Kassa S.M., and Ong, H.C.,
A new algorithm for multilevel optimization
problems using evolutionary strategy,
inspired by natural selection. In: Anthony,
A., Ishizuka, M., and Lukose, D., (Eds.):
PRICAI 2012, LNAI 7458, Springer-Verlag,
Berlin Heidelberg, 577 - 588 (2012).
[10] Fa´ısca, P.N., Dua, V., Rustem, B., Saraiva,
M.P., Pistikopoulos, N.E., Parametric global
optimisation for bilevel programming. Journal
of Global Optimization, 38, 609 - 623
(2006).
[11] Fa´ısca, P.N., Saraiva, M.P., Rustem, B.,
Pistikopoulos, N.E., A multiparametric programming
approach for multilevel hierarchical
and decentralized optimization problems.
Computational Management Science, 6, 377
- 397 (2009).
[12] Fiacco, V.A., Sensitivity analysis for nonlinear
programming using penalty methods.
Mathematical Programming, 10, 287 - 311
(1976).
[13] Dua, V., Pistikopoulos, N.E., An algorithm
for the solution of multiparametric mixed integer
linear programming problems. Annals
of Operations Research, 99, 123 - 139 (2001).
[14] Pistikopoulos, N.E., Georgiadis C.M. and
Dua V., (Editors) Multiparametric programming:
Theory, algorithm, and application.
WILEY-VCH Verlag GmbH and Co. KGaA,
(2007).
[15] Fiacco, V.A., Introduction to sensitivity and
stability analysis in nonlinear programming.
Acadamic press, (1983).
[16] Al-Khayyal, F.A., Jointly constrained bilinear
programs and related problems: an
overview. Computers Math. Applic., 19(11),
53 - 62 (1990).
[17] Androulakis, P.I., Maranas, D.C., and
Floudas, A.C., αBB: A Global optimization
method for general constrained nonconvex
problems. Journal of Global Optimization, 7,
1 - 27 (1995).
[18] Adjiman, S.C., Dallwing, S., Floudas, A.C.,
Neumaier, A., A global optimization method,
αBB, for general twice-defferentiable constrained
NLPs – I. Theoretical advances.
Computers and Chemical Engineering, 22,
1137 - 1158 (1998).
[19] Adjiman, S.C., Androulakis, P.I., Floudas,
A.C., A global optimization method, αBB,
for general twice-defferentiable constrained
NLPs – II. Implementaion and Computational
results. Computers and Chemical Engineering,
22, 1159 - 1179 (1998).
Thank you for copying data from http://www.arastirmax.com