Buradasınız

BÜTÜNLEŞİK TEDARİK ZİNCİRİ AĞINDA TESİS YERİ SEÇİMİ İÇİN BULANIK ÇOK AMAÇLI PROGRAMLAMA MODELİ

FUZZY MULTI-OBJECTIVE PROGRAMMING MODEL FOR FACILITY LOCATION IN AN INTEGRATED SUPPLY CHAIN NETWORK

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2014.98853
Abstract (2. Language): 
Traditional supply chain network design problems are often taken as a single objective. However, supply chains are complex networks formed by organizations having conflicting objectives with each other in real life. In this study, a multi-product, multi-stage and multi-period planning model is proposed to achieve multiple incommensurable goals in an integrated supply chain network with uncertain market demands. The supply chain planning model is constructed as a mixed-integer nonlinear programming problem to satisfy several conflicting objectives with each other. The proposed model consists of two objective functions. The first one is minimizing the fixed opening and operating costs with transportation costs determined depending on distances. Second one is minimizing the purchasing, ordering, inventory and backlogging costs according to Economic Production Quantity (EPQ) model. Fuzzy goal programming approach is used in order to include decision maker's imprecise goal values in proposed model. The model is solved using GAMS optimization program. The application results presented in this study, demonstrates that fuzzy modeling and solution approaches could be used in the creation of more realistic models of the supply chain.
Abstract (Original Language): 
Geleneksel tedarik zinciri ağı tasarım problemleri genellikle tek amaçlı olarak ele alınmıştır. Ancak, tedarik zincirleri gerçek hayatta birbirleri ile çelişen amaçları olan organizasyonların meydana getirdiği karmaşık ağlardır. Bu çalışmada, piyasa taleplerinin belirsiz olduğu bütünleşik bir tedarik zinciri ağındaki birden fazla ölçülemeyen amacı gerçekleştirmek için çok ürünlü, çok aşamalı ve çok dönemli planlama modeli önerilmiştir. Tedarik zinciri planlama modeli, birbiriyle çelişen birkaç amacı doyurmak için karışık tam sayılı doğrusal olmayan programlama problemi olarak bina edilmiştir. Önerilen model iki amaç fonksiyonundan oluşmaktadır. Birincisi, tedarik zincirindeki sabit tesis açma ve işletme maliyetleri ile mesafelere bağlı olarak belirlenen taşıma maliyetlerinin en azlanmasıdır. İkincisi, Ekonomik Üretim Miktarı (EÜM) modeline göre satın alma, sipariş verme, stok bulundurma ve yok satma maliyetlerinin en azlanmasıdır. Önerilen modelde, karar vericilerin kesin olmayan hedef değerlerini dahil edebilmek için bulanık hedef programlama yaklaşımı kullanılmıştır. Model, GAMS optimizasyon programı kullanılarak çözülmüştür. Çalışmada sunulan uygulama sonuçları, bulanık modelleme ve çözüm yaklaşımlarının daha gerçekçi tedarik zinciri modelleri oluşturulmasında kullanılabileceğini göstermiştir.
150
161

REFERENCES

References: 

[I] Bramel, J. ve Simchi-Levi, D., "The logic of logistics: theory, algorithms, and applications for logistics management", Springer Series in Operations Research, New York, 1997.
[2] Gümüş, A. T., Güneri, A. F. ve Keleş, S., "Supply chain network design using an integrated neuro-fuzzy and MILP approach: A comparative design study", Expert Systems with Applications, 36 (10), 12570-12577, 2009.
[3] Cohen, M.A. ve Lee, H.L., "Resource deployment analysis of global manufacturing and distribution networks", Journal of Manufacturing and Operations Management, 2, 81-104, 1989.
[4] Pyke, D.F. ve Cohen, M.A., "Performance characteristics of stochastic integrated production distribution systems", European Journal of Operational Research, 68 (1), 23-48, 1993.
[5] Özdamar, L. ve Yazgaç, T., "Capacity driven due date settings in make-to-order production systems", International Journal of Production Economics, 49 (1), 29¬44, 1997.
[6] Pirkul, H. ve Jayaraman, V., "A multi-commodity, multiplant, capacitated facility location problem: Formulation and efficient heuristic solution", Computers Operations Research, 25, 869-878, 1998.
[7] Syarif, A., Yun, Y.S. ve Gen, M., "Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach", Computer and Industrial Engineering, 43, 299-314, 2002.
[8] Altıparmak, F., Gen, M., Lin, L. ve Paksoy, T., "A genetic algorithm approach for multi-objective optimization of supply chain networks", Computers and Industrial Engineering, 51, 197-216, 2006.
[9] Thanh, P. N., Bostel, N. ve Pe'ton, O., "A dynamic model for facility location in the design of complex supply chains", International Journal of Production Economics, 113, 678¬693, 2008.
[10] Paksoy, T., Özceylan, E. ve Weber, G.W., "A multi-objective mixed ınteger programming model for multi echelon supply chain network design and optimization", System Research and Information Technologies, METU, 2009.
[II] Qin, J., Shi, F., Miao, L. ve Tan, G., "Optimal model and algorithm for multi-commodity logistics network design considering stochastic demand and ınventory control", Systems Engineering-Theory & Practice, 29 (4), 2009.
[12] Tuzkaya, U. ve Önüt S., "A holonic approach based integration methodology for transportation and warehousing functions of the supply network, Computers and Industrial Engineering, 56, 708-723, 2009.
[13] Melo, M.T., Nickel, S. ve Saldanha-da-Gama, F., "Facility
location and supply chain management-A review", European Journal of Operational Research, 196, 401-412,
2009.
[14] Mula, J., Peidro, D. ve Poler, R., "The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand", International Journal of Production Economics, 128, 136¬143, 2010.
[15] Zimmermann, H.J., "An application oriented view of
modelling uncertainity", European Journal of Operational
Research, 122, 190-198, 2000. [16] Petrovic, D., Roy, R. ve Petrovic, R., "Supply chain
modeling using fuzzy sets", International Journal of
Production Economics, 59, 443, 1999.
[17] Chen, L. ve Lee, W., "Multi objective optimization of multi echelon supply chain networks with uncertain product demands and prices", Computers and Chemical Engineering, 28, 1131-1144, 2004.
[18] Wang, J. ve Shu, Y.F., "Fuzzy decision modeling for supply chain management", Fuzzy Sets and Systems, 150, 107¬127, 2005.
[19] Xie, Y., Petrovic D. ve Burnham, K., "A heuristic procedure for the two-level control of serial supply chains under fuzzy customer demand", International Journal of Production Economics, 102 (1), 37-50, 2006.
[20] Xu, J., Liu, Q. ve Wang, R., "A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor", Information Sciences, 178 (8), 2022-2043,
2008.
[21] Liang, T.F., "Distribution planning decisions using interactive fuzzy multi-objective linear programming", Fuzzy Sets and Systems, 157, 1303-1316, 2006.
[22] Liang, T.F., "Applying fuzzy goal programming to production/transportation planning decisions in a supply chain", International Journal of Systems Science, 38, 293¬304, 2007.
[23] Liang, T.F., "Integrating production-transportation planning decision with fuzzy multiple goals in supply chains", International Journal of Production Research, 46 (15), 1477-1497, 2008.
[24]
Işık
, A.T. ve Özdemir, M., "Bütünleşik üretim planlamasında etkileşimli olabilirlikçi doğrusal programlama modeli ve bir uygulama", DEÜ İşletme Fakültesi Dergisi, 11 (2), 81-117, 2010.
[25] Paksoy, T., Pehlivan, Y.P. ve Özceylan, E., "Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer" Applied Mathematical Modelling, 36, 2762-2776, 2012.
[26] Paksoy, T. ve Pehlivan, Y.P., "A fuzzy linear programming model for the optimization of multi-stage supply chain networks with triangular and trapezoidal membership functions" Journal of the Franklin Institute, 349, 93-109,
2012.
[27] Kabak, Ö. ve Ülengin, F., "Possibilistic linear-programming approach for supply chain networking decisions", European Journal of Operational Research, 209, 253-264,
2011.
[28]
Mul
a J., Peidro D., Madranoreo M.D. ve Vicens E.,
"Mathematical programming for supply chain production
and transport planning", European Journal of Operational
Research, 204, 377-390, 2010. [29] Fahimnia, B., Farahani, R.Z., Marian, R. ve Luong, L., "A
review and critique on integrated production-distribution
planning models and techniques", Journal of
Manufacturing Systems, 32, 1-19, 2013. [30] Chang, S.C., "Fuzzy production inventory for fuzzy
product quantity with triangular fuzzy number", Fuzzy
Sets and Systems, 107 (1), 37-57, 1999. [31] Hsieh, C.H., "Optimization of fuzzy production inventory
models", Information Sciences, 146, 29-40, 2002. [32] Chang, P.T. ve Chang, C.H., "An elborative unit cost
structure-based fuzzy economic production quantity
model", Mathematical and Computer Modeling, Cilt 43,
Sayı 11/12, 1337-1356, 2006. [33] Chen, S.H., Wang, C.C. ve Chang, S.M., "Fuzzy economic
production quantity model for items with imperfect
160
H. A.
Sarıkaya,
E.
Çalışkan, O. Türkbey
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 20, Sayı 5,2014, Sayfalar 150-161
quality", International Journal of Innovative Computing,
Information and Control, 3 (1), 85-95, 2007. [34] Chen, S.H. ve Chang, S.M., "Optimization of fuzzy production inventory with unrepairable defective products" model for items with imperfect quality", International Journal of Production Economics, 113, 887¬894, 2008.
[35] Behret, H.,
"Üreti
m sistemlerinde bulanık tek dönemli stok kontrol modelleri, İTÜ Fen Bilimleri Enstitüsü,
Doktora Tezi, 2011.
[36] Zimmermann, H.J., "Fuzzy programming and linear
programming with several objective functions", Fuzzy
Sets and Systems, 1, 45-55, 1978. [37] Zimmerman, H.J., Fuzzy Sets Theory and Its Applications,
Kluwer Academics Publishers, Boston, 1991. [38] Lai, Y.J. ve Hwang, C.L., "Interactive fuzzy linear
programming", Fuzzy Sets and Systems, 45, 169-183,
1992.
[39] Lai, Y.J. ve Hwang, C.L., "Fuzzy multiple objective decision making, methods and applications", Lecture Notes in
Economics and Mathematical Systems, Springer, Berlin,
1994.
[40] Liang, T.F. ve Cheng, H.W., "Application of fuzzy sets to manufacturing/distribution planning decisions with multi-product and multi-time period in supply chains"", Expert Systems with Applications, 36, 3367-3377, 2009.
[41] Liang, T.F., "Application of fuzzy sets to manufacturing/distribution planning decisions in supply chains", Information Sciences, 181, 842-854, 2011.
[42] Bellman, R.E. ve Zadeh, L.A., "Decision-making in a fuzzy environment", Management Science, 17 (4), 141-164,
1970.
[43] Hannan, E.L., "On Fuzzy Goal Programming", Decision
Sciences, 12 (3), 522-531, 1981.
[44] Zimmermann, H.J., "Description and optimization of fuzzy systems", International Journal of General Systems, 2, 209¬215, 1976.

Thank you for copying data from http://www.arastirmax.com