Buradasınız

Fractional Helmholtz and Fractional Wave Equations with Riesz-Feller and Generalized Riemann-Liouville Fractional Derivatives

Journal Name:

Publication Year:

Abstract (2. Language): 
The objective of this paper is to derive analytical solutions of fractional order Laplace, Pois-son and Helmholtz equations in two variables derived from the corresponding standard equations in two dimensions by replacing the integer order partial derivatives with fractional Riesz-Feller derivative and generalized Riemann-Liouville fractional derivative recently defined by Hilfer. The Fourier-Laplace transform method is employed to obtain the solutions in terms of Mittag-Leffler functions, Fox H-function and an integral operator containing a Mittag-Leffler function in the kernel. Results for fractional wave equation are presented as well. Some interesting special cases of these equations are considered. Asymptotic behavior and series representation of solutions are analyzed in detail. Many previously obtained results can be derived as special cases of those presented in this paper.
312
334

REFERENCES

References: 

[1] B.L.J. Braaksma. Asymptotic expansions and analytic continuations for a class of Barnes-integrals, Compositio Mathematica 15, pp. 239-341. 1964.
[2] M. Caputo. Elasticita Dissipacione (Bologna: Zanichelli). 1969.
[3] A. Compte. Stochastic foundations of fractional dynamics, Physical Review E 53, pp. 4191¬4193. 1996.
[4] M.M. Dzherbashyan. Harmonic Analysis and Boundary Value Problems in the Complex Domain, Vol 65 ed I Gohberg (Basel: Birkhauser). 1993.
[5] A. Erdelyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi. Higher Transcedential Functions 3 (New York, Toronto and London: McGraw-Hill Book Company. 1955.
[ 6] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II (Wiley, New York) 1968.
[7] K.M. Furati, M.D. Kassim, and N.e.-Tatar. Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers and Mathematics with Applications 64, pp. 1616¬1626. 2012.
[ 8] M. Garg, A. Sharma, and P. Manohar. Linear space-time fractional reaction-diffusion equa¬tion with composite fractional derivative in time, Journal of Fractional Calculus and Ap¬plications 5, pp. 114-121. 2014.
[9] Y.-J. Hao, H.M. Srivastava, H. Jafari, and X.-J. Yang. Helmholtz and Diffusion Equations Associated with Local Fractional Derivative Operators Involving the Cantorian and Cantor-Type Cylindrical Coordinates, Advances in Mathematical Physics 2013, 754248. 2013.
[10] R. Hilfer. Fractional dynamics, irreversibility and ergodicity breaking, Chaos, Solitons and
Fractals 5, pp. 1475-1484. 1995.
REFERENCES
332
[11] R. Hilfer. Application of Fractional Calculus in Physics (Singapore: World Scientific Pub¬lishing Company). 2000.
[12] R. Hilfer. Experimental evidence for fractional time evolution in glass forming materials,
Chemical Physics 284, pp. 399-408. 2002.
[13] R. Hilfer. On fractional relaxation, Fractals 11, pp. 251-257. 2003.
[14] R. Hilfer, Y. Luchko, and Z. Tomovski. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fractional
Calculus and Applied Analysis 12, pp. 299-318. 2009.
[15] S. Al-Homidan, R.A. Ghanam, and N.-e. Tatar. On a generalized diffusion equation arising in petroleum engineering, Advances in Difference Equations 2013, 349. 2013.
[16] G. Jumarie. Non-standard analysis and Liouville-Riemann derivative, Chaos, Solitons and
Fractals 12, pp. 2577-2587. 2001.
[17] A.A. Kilbas, M. Saigo, and R.K. Saxena. Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms and Special Functions 15, pp. 31-49.
2004.
[18] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo. Theory and Applications of Fractional Dif¬ferential Equations (Amsterdam: Elsevier). 2006.
[19] M.-H. Kim, G.-C. Ri, and H.-C. O. Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives, Fractional Calculus and
Applied Analysis 17, pp. 79-95. 2014.
[20] J. Liang, W. Zhang, Y.Q. Chen, and I. Podlubny. Robustness of boundary control of frac¬tional wave equations with delayed boundary measurement using fractional order con¬troller and the Smith predictor, in: Proceedings of2005 ASME Design Engineering Technical Conferences, Long Beach, California, USA, 2005.
[21] J. Liang and Y.Q. Chen. Hybrid symbolic and numerical simulation studies of time-fractional order wave-diffusion systems, International Journal of Control 79, pp. 1462-1470. 2006.
[22] Y. Luchko. Fractional Schrödinger equation for a particle moving in apotential well, Journal
of Mathematical Physics 54, 012111. 2013.
[ 23] F. Mainardi. Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons and Fractals 7, pp. 1461-1477. 1996.
[ 24] F. Mainardi. The fundamental solutions for the fractional diffusion-wave equation, Applied Mathematics Letters 9, pp. 23-28. 1996.
[25] F. Mainardi and R. Gorenflo. On Mittag-Leffler-type functions in fractional evolution pro¬cesses, Journal of Computational and Applied Mathematics 118, pp. 283-299. 2000.
REFERENCES
333
[26] F. Mainardi and R. Gorenflo. Time-fractional derivatives in relaxation processes: a tutorial survey, Fractional Calculus and Applied Analysis 10, pp. 269-308. 2007.
[27] F. Mainardi, G. Pagnini, and R.K. Saxena. Fox H functions in fractional diffusion, Journal of Computational and Applied Mathematics 178, pp. 321-331. 2005.
[28] H.J. Haubold, A.M. Mathai, and R.K. Saxena. Solutions offractional reaction-diffusion equations in terms ofthe H-function, Bulletin of the Astronomical Society of India 35, pp.
681-689. 2007.
[ 29] A.M. Mathai, R.K. Saxena, and H.J. Haubold. The H-function: Theory and Applications (New York: Springer). 2010.
[ 30] R. Metzler, E. Barkai, and J. Klafter. Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach, Physical Review Letters 82,
pp. 3563-3567. 1999.
[31] R. Metzler and J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach, Physics Reports 339, pp. 1-77. 2000.
[ 32] R. Metzler and J. Klafter. The restaurant at the end ofthe random walk: recent develop¬ments in the description ofanomalous transport byfractional dynamics, Journal of Physics
A: Mathematical and General 37, pp. R161-R208. 2004.
[ 33] G. Pagnini, A. Mura, and F. Mainardi. Generalized fractional master equation for self-similar stochastic processes modelling anomalous diffusion, International Journal of
Stochastic Analysis 2012, 427383. 2012.
[34] I. Podlubny. Fractional Differential Equations, (San Diego: Acad. Press, 1999).
[35] T.R. Prabhakar. A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Mathematical Journal 19, pp. 7-15. 1971.
[36] S.G. Samko, A.A. Kilbas, and O.I. Marichev. Fractional Integrals and Derivatives. Theory and Applications (New York et al: Gordon and Breach). 1993.
[ 37] M.S. Samuel and A. Thomas. On fractional Helmholtz equations, Fractional Calculus and Applied Analysis 13, pp. 295-308. 2010.
[ 38] T. Sandev, R. Metzler, and Z. Tomovski. Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, Journal of Physics A: Mathematical and The¬oretical 44, pp. 255203. 2011
[39] T. Sandev and Z. Tomovski. The general time fractional wave equation for a vibrating string, Journal of Physics A: Mathematical and Theoretical 43, pp. 055204. 2010.
[40] B. Al-Saqabi, L. Boyadjiev, and Y. Luchko. Comments on employing the Riesz-Feller derivative in the Schrödinger equation, European Physical Journal 222, pp. 1779-1794. 2013.
REFERENCES
334
[ 41 ] R.K. Saxena. On a fractional master equation and a fractional diffusion equation, Mathe¬matics and Statistics 1, pp. 59-63. 2013.
[42] R.K. Saxena, A.M. Mathai, and H.J. Haubold. Unified fractional kinetic equation and a fractional diffusion equation, Astrophysics and Space Science 290, pp. 299-310. 2004.
[43] R.K. Saxena, A.M. Mathai, and H.J. Haubold. Fractional reaction-diffusion equations, As¬trophysics and Space Science 305, pp. 289-296. 2006.
[ 44] R.K. Saxena, A.M. Mathai, and H.J. Haubold. Solutions offractional reaction-diffusion equations in terms of Mittag-Leffler functions, International Journal of Scientifc Research
17, pp. 1-17. 2008.
[45] R.K. Saxena, A.M. Mathai, and H.J. Haubold. Computational solutions of unified fractional reaction-diffusion equations with composite fractional time derivative, arXiv:1210.1453v1.
[ 46] H.M. Srivastava and R.K. Saxena. Operators offractional integration and their applica¬tions, Applied Mathematics and Computation 118. pp. 1-52. 2001.
[ 47] H.M. Srivastava and Z. Tomovski. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Applied Mathematics and Computation
211, pp. 198-210. 2009.
[ 48] A. Thomas. On a fractional master equation, International Journal of Differential Equa¬tions 2011,346298. 2013.
[49] Z. Tomovski. Generalized Cauchytype problems for nonlinear fractional differential equa¬tions with composite fractional derivative operator, Nonlinear Analysis: Theory, Methods
and Applications 75, pp. 3364-3384. 2012.
[50] Z. Tomovski, R. Hilfer, and H.M. Srivastava. Fractional and operational calculus with gen¬eralized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms and Special Functions 21, pp. 797-814. 2010.
[51] Z. Tomovski and T. Sandev. Effects of a fractional friction with power-law memory kernel on string vibrations, Computers and Mathematics with Applications 62, pp. 1554-1561.
2011.
[ 52] Z. Tomovski and T. Sandev. Fractional wave equation with a frictional memory kernel of Mittag-Leffler type, Applied Mathematics and Computation 218, pp. 10022-10031. 2012.
[ 53] Z. Tomovski and T. Sandev. Exact solutions for fractional diffusion equation in a bounded domain with different boundary conditions, Nonlinear Dynamics 71, pp. 671-683. 2013.
[ 54] Z. Tomovski, T. Sandev, R. Metzler, and J. Dubbeldam. Generalized space-time fractional diffusion equation with composite fractional time derivative, Physica A 391, pp. 2527-2542.
2012.

Thank you for copying data from http://www.arastirmax.com