[1] W.H. Asquith. L-moments and TL-moments of the generalized lambda distribution. Computational Statistics & Data Analysis, 51:4484-4496, 2007.
REFERENCES
32
[ 2] B. Fournier, N. Rupin, M. Bigerelle, D. Najjar, A. Iost and R. Wilcox. Estimating the pa¬rameters of a generalized lambda distribution. Computational Statistics & Data Analysis,
51:2813-2835, 2007.
[ 3] M. Freimer, G. Mudholkar, G. Kolloa. and C. Lin. A study of the generalized Tukey lambda family. Communications in Statistics-Theory and Methods, 17:3547-3567, 1988.
[4] Z.A. Karian and E.J. Dudewicz. Fitting Statistical Distribution: The Generalized Lambda Distribution and Generalized Bootstrap Methods, Boca Raton, FL:CRC Press, 2000.
[5] Z.A. Karian and E.J. Dudewicz. Handbooks of Fitting Statistical Distributions with R. New
York: CRC Press, 2011.
[ 6] R. King and H. MacGillivray. A starship estimation methods for the generalized lambda distributions. Australia & New Zealand Journal of Statistics, 41:353-374, 1999.
[ 7] A. Lakhany and H. Massuer. Estimating the parameters of the generalized lambda dis¬tribution. Algo Research Quarterly, 47-58, 2000.
[ 8] W. Ning, Y.C. Gao and E.J. Dudewicz. Fitting Mixture Distributions Using Generalized Lambda Distributions and Comparisons with Normal Mixtures. American Journal of Mathematical and Management Science. Vol. 28, NOS. 1&2, 81-99, 2008.
[ 9] W. Ning and A.K. Gupta. Change point analysis for generalized lambda distributions. Communication in Statistics-Simulations and Computation. 38:1789-1802, 2009.
[10] A.B. Owen. Empirical likelihood ratio confidence intervals for a single functional.
Biometrika, 75:237-249, 1988.
[11] A.B. Owen. Empirical likelihood ratio confidence regions. The Annals of Statistics, 18:90¬120, 1990.
[12] A.B. Owen. Empirical Likelihood. New York: CRC Press, 2001.
[ 13] J.S. Ramberg and B.W. Schmeiser. An approximation method for generating symmetric random variables. Communications ofthe ACM, 15: 987-990, 1972.
[ 14] J.S. Ramberg and B.W. Schmeiser. An approximation method for generating symmetric random variables. Communications ofthe ACM, 17:78-82, 1974.
[ 15] J.S. Ramberg, P.R. Tadikamalla, E.J. Dudewicz and E.F. Mykytka. A probability distribu¬tion and its uses in fitting data. Technometrics, 21:201-214, 1979.
[16] S. Su. A discretized approach to flexibility fit generalized lambda distributions to data. Journal ofModern Applied Statistical Methods, 4:402-424, 2005.
[ 17] S. Su. Numerical maximum log likelihood estimation for generalized lambda distribu¬tion. Computational Statistics & Data Analysis, 51:3983-3998, 2007.
REFERENCES
33
[ 18] S. Su. Fitting single and mixture of generalized lambda distribution to data via dicretized and maximum likelihood methods: GLDEX in R. Journal ofStatistical Software, 21:1-17,
2007.
[ 19] S. Su, A. Hasan. and W. Ning. (2013). The RS generalized lambda distribution based calibration model. International Journal ofStatistics and Probability. 2:101-107, 2013.
[ 20] J.W. Tukey. The practice relationship between the common transformations of percent¬ages of counts and of amounts. Technical Report 36, Statistical Techniques Research Group, Princeton University, 1960.
[ 21 ] O. Vasicek. A test for normality based on sample entropy. Journal ofRoyal Statistical
Society, B, 38:54-59, 1976.
[22] A. Vexler and G. Gurevich. Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy. Computational Statistics and Data Analysis, 54:531-545, 2010.
[ 23] A. Vexler, G. Shan, S.G. Kim, W.M. Tsai, L. Tian and A.D. Hutson. An empirical likelihood ratio based goodness-of-fit test for inverse Gaussian distributions. Journal of Statistical Planning and Inference 141:2128-2140, 2011.
Thank you for copying data from http://www.arastirmax.com