Buradasınız

NANOKİL VE KABARAN ALEV GECİKTİRİCİ İLAVESİNİN RİJİT POLİÜRETAN KÖPÜK MALZEMELERİN ISIL BOZUNMA VE YANMA DAVRANIŞLARINA ETKİLERİNİN İNCELENMESİ

INVESTIGATION THE EFFECTS OF NANOCLAY AND INTUMESCENT FLAME RETARDANT ADDITIONS ON THERMAL AND FIRE BEHAVIOUR OF RIGID POLYURETHANE FOAMS

Journal Name:

Publication Year:

Abstract (2. Language): 
Different inorganic materials are added into rigid polyurethane foams for improving properties and reducing production costs. Among them, it was found that nanoclay was added up to 6 % in the total mass. In this study, with the best knowledge of the authors, nanoclay / intumescent flame retardant composed of ammonium polyphosphate and pentaerythritol were added up to 15 % in the total mass into the rigid polyurethane foams for the first time. The effects of nanoclay and intumescent flame retardant additions on the cell size, the coefficient of thermal conductivity, the thermal degradation and the fire resistance were investigated. Furthermore, there is a lack of information in the literature about changes of the thermal conductivity of the foams with respect to time and the effects of fillers and flame retardants on the changes. Therefore, the changes of thermal conductivity coefficients of the foams were examined during two months after the productions. Experimental results indicated that the fire resistance and the thermal stability of the foams could be enhanced with 15 % nanoclay addition. However, nanoclay and the intumescent flame retardant additions into rigid polyurethane foams caused better thermal stability and fire resistance. Meanwhile, it was found that the incorporation of nanoclay / the intumescent flame retardant resulted in slightly increasing in thermal conductivity of the foams.
Abstract (Original Language): 
Rijit poliüretan köpük malzemelere, bu malzemelerin özeliklerini iyileştirmek ve maliyetleri düşürmek için farklı inorganik maddeler ilave edilmektedir. Bu inorganik maddeler içinde, kilin toplam kütlenin en fazla % 6 oranına kadar poliüretan köpük malzemeye ilave edildiği belirlenmiştir. Bu çalışmada ise, yazarların bilgisi dahilinde, ilk defa % 15'e varan oranda nanokil ve amonyum polifosfat/pentaeritritolden oluşan kabaran alev geciktiricinin ilavesi yapılmıştır. Nanokil ve kabaran alev geciktirici ilavesinin, köpük malzemelerin hücre boyutuna, ısı iletim katsayısına, ısıl bozunma ve yanmaya karşı direncine etkileri incelenmiştir. Bunlara ek olarak, köpük malzemelerin zamanla ısı iletim katsayılarındaki değişim ve dolgu/alev geciktiricilerin bu değişime etkileri üzerine literatürde yeterli bilgi bulunmadığı dikkate alınarak üretimden sonra iki aylık bir süre içerisinde, köpük malzemelerin ısı iletim katsayılarının değişimi de takip edilmiştir. Deneysel sonuçlar, nanokilin % 15 oranında ilavesi ile köpük malzemenin ısıl kararlılığının ve yanma direncinin iyileştirilebileceğini göstermektedir. Bununla birlikte, nanokil ve kabaran alev geciktiricinin birlikte ilavesinin köpük malzemenin ısıl bozunma ve yanmaya karşı direncini daha da iyileştirdiği belirlenmiştir. Aynı zamanda nanokil/kabaran alev geciktirici ilavesinin köpük malzemenin ısı iletim katsayısında az bir miktar artışa sebep olduğu da tespit edilmiştir.
9
18

REFERENCES

References: 

1. Wang, J.Q. ve Chow, W.K., “A Brief Review on
Fire Retardants for Polymeric Foams”, Journal
of Applied Polymer Science, Cilt 97, No 1, 366-
376, 2005.
2. Modesti, M., Zanella, L., Lorenzetti, A., Bertani,
R. ve Gleria, M., “Thermally Stable Hybrid
Foams Based on Cyclophosphazenes and
Polyurethanes”, Polymer Degradation and
Stability, Cilt 87, No 2, 287-292, 2005.
3. Kulesza, K., Pielichowski, K. ve German, K.,
“Thermal Decomposition of Bisphenol A-Based
Polyetherurethanes Blown with Pentane - Part I -
Thermal and Pyrolytical Studies”, Journal of
Analytical and Applied Pyrolysis, Cilt 76, No
1-2, 243-248, 2006.
4. Singh, B., Gupta, M. ve Tarannum, H., “Jute
Sandwich Composite Panels for Building
Applications”, Journal of Biobased Materials
and Bioenergy, Cilt 4, No 4, 397-407, 2010.
5. Paciorek-Sadowska, J., Czuprynski, B.,
Liszkowska, J. ve Jaskolowski, W., “New Polyol
for the Production of Rigid Polyurethane-
Polyisocyanurate Foams. Part II. Preparation of
Rigid Polyurethane-Polyisocyanurate Foams with
Use of New Boroorganic Polyol”, Polimery, Cilt
55, No 2, 99-105, 2010.
6. Tuen, B. S., Hassan, A. ve Abu Bakar, A.,
“Thermal Properties and Processability of Talcand
Calcium Carbonate-Filled Poly(vinyl
chloride) Hybrid Composites”, Journal of Vinyl
& Additive Technology, Cilt 18, No 2, 87-94,
2012.
7. Donate-Robles, J. ve Martin-Martinez, J.M.,
“Comparative Properties of Thermoplastic
Polyurethane Adhesive Filled with Natural or
Precipitated Calcium Carbonate”,
Macromolecular Symposia, Cilt 301, No 1, 63-
72, 2011.
8. Leong, Y.W., Abu Bakar, M. B., Mohd. Ihsak,
Z.A. ve Ariffin, A., “Effects of Filler Treatments
on the Mechanical, Flow, Thermal, and
Morphological Properties of Talc and Calcium
Carbonate Filled Polypropylene Hybrid
Composites”, Journal of Applied Polymer
Science, Cilt 98, No 1, 413-426, 2005.
9. Romero-Ibarra, I.C., Bonilla-Blancas, E.,
Sanchez-Solis, A. ve Manero, O., “Influence of
the Morphology of Barium Sulfate Nanofibers
and Nanospheres on the Physical Properties of
Polyurethane Nanocomposites”, European
Polymer Journal, Cilt 48, No 4, 670-676, 2012.
10. Ali, V., Neelkamal, Haque, F.Z., Zulfequar, M.
ve Husain, M., “Preparation and Characterization
of Polyether-Based Polyurethane Dolomite
Composite”, Journal of Applied Polymer
Science, Cilt 103, No 4, 2337-2342, 2007.
11. Chen-Yang, Y.W., Yang, H.C., Li, G.J. ve Li,
Y.K., “Thermal and Anticorrosive Properties of
Polyurethane Clay Nanocomposites”, Journal of
Polymer Research, Cilt 11, No 4, 275-283,
2005.
12. Fereidoonnia, M., Barmar, M. ve Barikani,
M.,“Influence of a Reactive Organoclay on
Polymerization and Properties of Polyurethane
Nanocomposites”, Polymer-Plastics Technology
and Engineering, Cilt 48, No 1, 90-96, 2008.
13. Saha, M.C., Kabir, M.E. ve Jeelani, S.,
“Enhancement in Thermal and Mechanical
Properties of Polyurethane Foam Infused with
Nanoparticles”, Materials Science and
Engineering: A, Cilt 479, No 1-2, 213-222,
2008.
14. Bastin, B., Paleja, R. ve Lefebvre, J., “Fire
Behavior of Polyurethane Foams”, Journal of
Cellular Plastics, Cilt 39, No 4, 323-340, 2003.
15. Zatorski, W., Brzozowski, Z. K. ve Kolbrecki,
A., “New Developments in Chemical
Modification of Fire-safe Rigid Polyurethane
Foams”, Polymer Degradation and Stability,
Cilt 93, No 11, 2071-2076, 2008.
16. Usta, N., “Investigation of Fire Behavior of Rigid
Polyurethane Foams Containing Fly Ash and
Intumescent Flame Retardant by Using a Cone
Calorimeter”, Journal of Applied Polymer
Science, Cilt 124, No 4, 3372-3382, 2012.
17. Tarakcılar, A.R., “The Effects of Intumescent
Flame Retardant Including Ammonium
Polyphosphate/Pentaerythritol and Fly Ash
Fillers on the Physicomechanical Properties of
Rigid Polyurethane Foams”, Journal of Applied
Polymer Science, Cilt 120, No 4, 2095-2102,
2011.
18. Saint-Michel, F., Chazeau, L. ve Cavaille, J.Y.,
“Mechanical Properties of High Density
Polyurethane Foams: II Effect of the Filler Size”,
B. Aydoğan, N. Usta Nanokil ve Kabaran Alev Geciktirici İlavesinin Rijit Poliüretan Köpük Malzemelerin…
18 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 30, No 1, 2015
Composites Science and Technology, Cilt 66,
No 15, 2709-2718, 2006.
19. Corcione, C. E., Maffezzoli, A. ve Cannoletta,
D., “Effect of a Nanodispersed Clay Fillers on
Glass Transition of Thermosetting Polyurethane”,
Macromolecular Symposia, Cilt 286, No 1, 180-
186, 2009.
20. Pashaei, S., Siddaramaiah and Syed, A.A.,
“Thermal Degradation Kinetics of
Polyurethane/Organically Modified
Montmorillonite Clay Nanocomposites by TGA”,
Journal of Macromolecular Science, Part A:
Pure and Applied Chemistry, Cilt 47, No 8,
777-783, 2010.
21. Kim, S.H., Lee, M.C., Kim, H.D., Park, H.C.,
Jeong, H.M., Yoon, K.S. ve Kim, B.K.,
“Nanoclay Reinforced Rigid Polyurethane
Foams”, Journal of Applied Polymer Science,
Cilt 117, No 4, 1992-1997, 2010.
22. Widya, T. ve Macosko, C.W., “Nanoclay-
Modified Rigid Polyurethane Foam”, Journal of
Macromolecular Science, Part B: Physics, Cilt
44, No 6, 897-908, 2005.
23. Thirumal, M., Khastgir, D., Singha, N.K.,
Manjunath, B.S. ve Naik, Y.P., “Effect of a
Nanoclay on The Mechanical, Thermal and
Flame Retardant Properties of Rigid Polyurethane
Foam”, Journal of Macromolecular Science,
Part A: Pure and Applied Chemistry, Cilt 46,
No 7, 704-712, 2009.
24. Demir, H., Arkis, E., Balköse, D. ve Ülkü, S.
“Synergistic Effect of Natural Zeolites on Flame
Retardant Additives”, Polymer Degradation and
Stability, Cilt 89, No 3, 478-483, 2005.
25. ASTM C1113, Standard Test Method for
Thermal Conductivity of Refractories by Hot
Wire, ASTM International, West Conshohocken,
PA, U.S.A., 2013.
26. UL 94, Tests for Flammability of Plastic
Materials for Parts in Devices and Appliances,
Underwriters Laboratories Inc., Northbrook, IL,
U.S.A., 1996.
27. ASTM D3576-04, Standard Test Method for Cell
Size of Rigid Cellular Plastics, ASTM
International, West Conshohocken, PA, U.S.A.,
2004.
28. Zivica, V. ve Palou, M.T., “Physico-Chemical
Characterization of Thermally Treated
Bentonite”, Composites Part B: Engineering,
Cilt 68, 436-445, 2015.
29. Samyn, F., Bourbigot, S., Duquesne, S. ve
Delobel, R., “Effect of zinc borate on the thermal
degradation of ammonium polyphosphate”,
Thermochimica Acta, Cilt 456, No 2, 134-144,
2007.
30. Zheng, X., Wang, G. ve Xu, W., “Roles of
Organically-Modified Montmorillonite and
Phosphorous Flame Retardant During the
Combustion of Rigid Polyurethane Foam”,
Polymer Degradation and Stability, Cilt 101,
32-39, 2014.
31. Tien, Y.I. ve Wei, K.H., “Thermal Transitions of
Montmorillonite / Polyurethane Nanocomposites,
Journal of Polymer Research, Cilt 7, No 245-
250, 2000.
32. Xiong, J., Zheng, Z., Jiang, H., Ye, S. ve Wang,
X., “Reinforcement of Polyurethane Composites
with an Organically Montmorillonite”,
Composites Part A: Applied Science and
Manufacturing, Cilt 38, No 1, 132-137, 2007.
33. Cervantes-Uc, J. M., Moo Espinosa, J. I., Cauich-
Rodriguez, J. V., Avila-Ortega, A., Vasquez-
Torres, H., Marco-Fernandez, A. ve San Roman
del Barrio, J., “TGA/FTIR Studies of Segmented
Aliphatic Polyurethanes and Their
Nanocomposites Prepared with Commercial
Montmorillonites”, Polymer Degradation and
Stability, Cilt 94, No 10, 1666-1677, 2009.
34. Pauzi, N. N. P. N., Majid R. A., Dzulkifli M. H.
ve Yahya, M.Y., “Development of Rigid Biobased
Polyurethane Foam Reinforced with
Nanoclay”, Composites Part B: Engineering,
Cilt 67, 521-526, 2014.
35. Modesti, M., Lorenzetti, A., Besco, S., Hrelja, D.,
Semenzato, S., Bertani, R. ve Michelin, R.A.,
“Synergism Between Flame Retardant and
Modified Layered Silicate on Thermal Stability
and Fire Behaviour of Polyurethane
Nanocomposite Foams”, Polymer Degradation
and Stability, Cilt 93, No 12, 2166-2171, 2008.
36. Piszczyk, Ł., Strankowski, M., Danowska, M.,
Haponiuk, J.T. ve Gazda, M., “Preparation and
Characterization of Rigid Polyurethane–
Polyglycerol Nanocomposite Foams”, European
Polymer Journal, Cilt 48, No 10, 1726-1733,
2012.
37. Fan, H., Tekeei, A., Suppes, G. J. ve Hsieh, F.,
“Properties of Biobased Rigid Polyurethane
Foams Reinforced with Fillers: Microspheres and
Nanoclay”, International Journal of Polymer
Science, Cilt 2012, Article ID 474803,
DOI:10.1155/2012/474803, 2012.
38. Marrucho, I.M., Santos, F. ve Oliveira, N.S.,
“Aging of Rigid Polyurethane Foams: Thermal
Conductivity of N-2 and Cyclopentane Gas
Mixtures”, Journal of Cellular Plastics, Cilt 41,
No 3, 207-224, 2005.
39. Modesti, M., Lorenzetti, A. ve Besco, S.,
“Influence of Nanofillers on Thermal Insulating
Properties of Polyurethane Nanocomposites
Foams”, Polymer Engineering and Science, Cilt
47, No 9, 1351-1358, 2007.
40. Amiri, R.S.N., Tirri, T. ve Wilen, C.E., “Flame
Retardant Polyurethane Nanocomposite: Study of
Clay Dispersion and Its Synergistic Effect with
Dolomite”, Journal of Applied Polymer
Science, Cilt 129, No 4, 1678-1685, 2013.

Thank you for copying data from http://www.arastirmax.com