Buradasınız

YAPAY SİNİR AĞLARI İLE Al/SiC KOMPOZİT MALZEMENİN YÜZEY PÜRÜZLÜLÜĞÜNÜN TAHMİNİ

PREDICTION OF SURFACE ROUGHNESS OF Al/SiC COMPOSITE MATERIAL WITH ARTIFICIAL NEURAL NETWORKS

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study, surface roughness of Al/SiC composite material depending on the cutting parameters were predicted with high accuracy using approach of artifical neural network. Surface roughness values obtained as experimentally result of machining with TiCN+TiN coated cementide carbide cutting element of Al/SiC composite material are trained in nine different ANN models with feed forward back propogation. The numbers of neuron in network structure of ANN models are 3-5-6-1, 3-6-4-1, 3-6-6-1, 3-4-3-5-1, 3-4-5-3-1, 3-6-2-3-1, 3¬7-1, 3-8-1 ve 3-9-1. The values obtained from the ANN training and testing were evaluated by applying the statistical analyses that are widely used in ANN models. In the face of diffuculty of experimental studies and complexity of the analitical expression, as with many studies, this study also showed that ANN is a usable method for predicting the surface roughness value depending on cutting parameters.
Abstract (Original Language): 
Bu çalışmada Al/SiC kompozit malzemenin yüzey pürüzlülüğü kesme parametrelerine bağlı olarak yapay sinir ağları yaklaşımı kullanılarak yüksek doğrulukta tahmin edilmiştir. Al/SiC kompozit malzemenin TiCN+TiN kaplamalı cementide carbide kesici takımla işlenmesi sonucu deneysel olarak elde edilen yüzey pürüzlülüğü değerleri ileri beslemeli geriye yayılımlı 9 farklı YSA modelde eğitilmiştir. YSA modellerinin ağ yapılarındaki nöron sayıları: 3-5-6-1, 3-6-4-1, 3-6-6-1, 3-4-3-5-1, 3-4-5-3-1, 3-6-2-3-1, 3-7-1, 3-8-1 ve 3-9-1'dir. YSA'nın eğitimi ve testi sonrası elde edilen değerler YSA modellerde yaygın olarak kullanılan istatistiksel analizlere tabi tutularak incelenmiştir. Deneysel çalışmaların zorluğu, analitik ifadelerin karmaşıklığı bir çok çalışmada olduğu gibi, YSA kullanımının avantajı kullanılarak kesme parametrelerine bağlı olarak yüzey pürüzlülüğünün tahmini bu çalışmada da YSA'nın kullanılabilirliğini göstermiştir.
209
216

REFERENCES

References: 

1. Karayel, D., "Prediction and control of surface roughness in CNC lathe using artificial neural network", Journal of Materials Processing Technology, 209, 7, 3125-3137, 2009.
2. Neşeli, S., Yaldız S. ve Turkes, E., "Optimization of tool geometry parameters for turning operations based on the response surface methodology", Measurement, 44, 3 580-587,
2011.
3.
Davim
, J.P., Gaitonde, V. N. ve Karnik, S. R., "Investigation into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models", Journal of Material
Processing Technology, 205, 16-23, 2008.
4. Nalbant, M., Gokkaya, H. ve Sur, G., "Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning", Materials & Design, 28, 4, 1379-1385, 2007.
5. Neşeli, S., Taşdemir Ş. ve Yaldız, S., "Prediction of surface roughness on turning with Artificıal Neural Network", Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, XXII, 3, 65-75, 2009.
6. Kohli, A., Dixit, U.S., "A neural-network-based methodology for the prediction of surface roughness in a turning process", Int. J. Adv. Manuf. Technol, 25, 118-129, 2005.
7. Bernardos, P.G., Vosniakos, G.C., "Predicting surface roughness in machining: a review",
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 29, No 1, 2014
215
İ. Şahin
Yapay Sinir Ağları İle Al/SiC Kompozit Malzemenin Yüzey Pürüzlülüğünün Tahmini
International Journal of Machine Tools &
Manufacture 43, 8, 833-844, 2003.
8. Petropoulos,
G.P.
, Vaxevanidis, N. M., Pandazaras, C.N. ve Antoniadis, A.A., "Multiparameter identification and control of turned surface textures", Int. J. Adv. Manuf. Technol., 29, 1-2, 118-128, 2006.
9. Oktem, H., Erzurumlu T., Erzincanlı F., "Prediction of minumum surface roughness in end milling mold part using neural network and genetic algorithm" Materials and Design, 27,
735-744, 2006.
10. Vishal S. S., Suresh D., Rakesh S. ve Sharma, S. K., "Estimation of cutting forces and surface roughness for hard turning using neural Networks", J. Intell Manuf,19, 473-483, 2008.
11. Sanjay , C., Jyothi, C. ve Chin, W., "A study of surface roughness in drilling using mathematical analysis and Neural Networks", Int. Adv. Man.
Tec., 30, 9, 846-852, 2006.
12. Zain A.M., Haron. H. ve Sharif, S., "Prediction of surface roughness in the end milling machining using artificial neural network", Robotics and computer integrated manufacturing, 19, 189¬199, 2006.
13.
Taşdemir
, Ş., Neşeli S., Sarıtaş İ. ve Yaldız S., "Prediction of surface roughness using artificial neural network in Lathe", CompSysTech'08,
Gabrovo, Bulgaria, 2008.
14.
Nalbant
, M., Gökkaya, H., Toktaş, İ., Sur, G., "The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks", Robotics and Computer-Integrated Manufacturing, 25, 1, 211-223, 2009.
15. Abeesh, B. C., Dabade, U. A., Joshi, S. S.,
Bhanuprasad, V. V., & Gadre, V. M. "Modeling of surface roughness in precision machining of metal matrix composites using ANN", Journal of Material Processing Technology, 197, 439¬444, 2008.
16. Asiltürk İ., Cunkaş, M., "Modelling and Prediction of surface roughness in turning operations using artificial neural network and multiple regression method", Expert system with Application, 38, 5826-5832, 2011.
17. Feng C-X, Wang X-F, "Surface roughness prediction modelling: neural networks versus regression", IIE Trans., 35, 1, 11-27, 2003.
18.
Turgut
, Y., Çinici, H., Şahin, İ. ve Fındık, T., "Study of cutting force and surface roughness in milling of Al/Sic metal matrix composites", Scientific Research and Essays, 6, 10, 2056¬2062, 2011.
19. Ozdemir, V., " Determination of Turkey's carbonizatıon index based on basic energy indicators by Artifıcial Neural Networks,
Journal of The Faculty of Engineering and Architecture of Gazi University, 26, 1, 9-15,
2011.
20. Eker, A. M., Dikmen, M., Cambazoğlu, S., Düzgün, Ş.H.S.B., "Application of artificial neural network and logistic regression methods to landslide susceptibility mapping and comparison of the results for the Ulus district, Bartın", Journal of The Faculty of Engineering and Architecture of Gazi University, 27, 1, 163¬173, 2012
21. Kalogirou, S. A., "Artificial intelligence for the modeling and control", Progress in Energy and Combustion Science, 29, 515-566, 2003.
22.
F
ındık, T., Taşdemir, Ş. ve Şahin, İ., "The use of artificial neural network for prediction of grain size of 17-4 pH stainless steel powders", Scientific Research and Essays, 5 , 11, 1274¬1283, 2010.
23. Aşkın, D., İskender, İ. ve Mamizadeh, A., "Dry type transformer winding thermal analysis using different neural network methods", Journal of The Faculty of Engineering and Architecture of Gazi University, 26, 4, 905-913, 2011.
24. Karataş, Ç., Sozen, A. ve Dulek, E., 'Modelling of residual stresses in the shot peened material C-1020 by artificial neural network", Expert Systems with Applications, 36, 2, 3514-3521,
2009.
25. Menlik, T., Özdemir, M.B. vr Kirmaci, V., "Determination of freze - drying behaviors of apples by artificial neural network", Expert system with application, 37, 7669-7677, 2010.
26. Sozen, A., Future projection of the energy dependency of Turkey using artificial neural
network, Energy Policy, 37, 4827-4833, 2009.
27. Sözen, A., Arcaklıoğlu, E., Menlik, T., Özalp, M., "Determination of thermodynamic properties of an alternative refrigerant (R407c) using artificial neural network", Expert Systems with Applications, 36, 3,. 4346-4356, 2009.
28. Lewis,. C.D., Industrial and Business Forecasting Methods., Butterworths Publishing,
London, 1982.

Thank you for copying data from http://www.arastirmax.com