Buradasınız

AISI 304 ÇELİĞİNİ FARKLI GEOMETRİLERDE LAZERLE KESMEDE PARAMETRELERİN BOYUTSAL DOĞRULUK ÜZERİNE ETKİLERİNİN MODELLENMESİ

MODELING OF THE EFFECTS OF PARAMETERS ON DIMENSIONAL ACCURACY IN LASER CUTTING OF AISI 304 STEEL WITH DIFFERENT GEOMETRIES

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, some certain sizes of triangular, square and circular shaped parts have been cut through CO2 laser cutting centre over a 4 and 6 mm thickness of AISI 304 stainless steel material at different cutting conditions and the effects of cutting parameters were investigated on the dimensional accuracy of the samples. As the independent variables, laser power (W), cutting feed rate (F), focus point (ON) and gas pressure (P) have been selected. By using Full Factorial Experimental Design Technique (TFT), a total of 486 experiments have been carried out on the 4 and 6 mm thick sheet materials at three different levels of the independent parameters. Using the experimental data obtained as a result of the measurements made with three-dimensional coordinate measurement machine (CMM), the second-order predictive models, including the effects of laser cutting parameters on the dimensional accuracy of the triangular, square and circular-shaped samples have been improved through the Regression Analysis. Correlation coefficients of the predictive equations developed in the 95% confidence level have been obtained over R2=0,78. In this study, furthermore, the main effect graphics showing the effects of independent variables on the dimensional accuracy have also been formed and the effects of parameters were evaluated. The most effective parameters on the dimensional accuracy of the cut parts were laser power, cutting feed rate and focus point, respectively.
Abstract (Original Language): 
Bu çalışmada, 4 ve 6 mm kalınlığındaki AISI 304 paslanmaz çelik malzeme üzerinden belirli ölçülerde üçgen, kare ve dairesel şekilli parçalar farklı kesme şartlarında CO2 lazer kesim tezgâhı ile kesilmiş ve kesilen numunelerin boyutsal doğruluğu üzerinde kesme parametrelerinin etkileri araştırılmıştır. Bağımsız değişkenler olarak lazer gücü (W), kesme ilerlemesi (F), odak noktası (ON) ve gaz basıncı (P) seçilmiştir. Tam Faktöriyel Deneysel Tasarım Tekniği (TFT) kullanılarak bağımsız parametrelerin üç farklı seviyesinde 4 ve 6 mm kalınlığındaki sac malzemeler üzerinde toplam 486 deney yapılmıştır. 3 boyutlu koordinat ölçme tezgâhı (CMM) ile yapılan ölçümler sonucu elde edilen deneysel veriler kullanılarak üçgen, kare ve dairesel şekilli numunelerin boyutsal doğruluğu üzerinde lazer kesme parametrelerinin etkilerini içeren ikinci dereceden tahminsel modeller Regresyon Analizi ile geliştirilmiştir. %95 güven seviyesinde geliştirilen tahminsel denklemlerin korelâsyon katsayıları R2=0,78’in üzerinde elde edilmiştir. Bu çalışmada ayrıca, bağımsız parametrelerin boyutsal doğruluk üzerinde etkilerini gösteren ana etki grafikleri oluşturulmuş ve parametrelerin etkileri değerlendirilmiştir. Kesilen parçaların boyutsal doğruluğu üzerinde en etkili parametreler sırasıyla lazer gücü, kesme ilerlemesi ve odak noktası olmuştur.
505
515

REFERENCES

References: 

1. Durukan, Z., “Lazer ile Kesmede İş ve İşleme
Parametrelerinin Geometrik ve Boyut
Değişimlerine Etkilerinin İncelenmesi”, Yüksek
Lisans Tezi, Gazi Üniversitesi Fen Bilimleri
Enstitüsü, Ankara, 122-171, 2010.
2. Cemal, M., “Lazer ile Kesme ve Endüstriyel
Uygulamaları” Yüksek Lisans Tezi, Mustafa
Kemal Üniversitesi Fen Bilimleri Enstitüsü,
Antakya, 32-37, 2006.
3. Vatsya, S. R., Bordatchev, E. V. ve Nikumb, S.
K., “Geometrical Modeling of Surface Profile
Formation During Laser Ablation of Materials”,
Journal of Applied Physics, Cilt 93, No 12,
9753-9759, 2003.
4. http://www.konlazer.com.tr/main.swf, 2010.
5. Grum, J. ve Zuljan, D., “Frequency Analyses of
A Signal of Irradiation From the Cutting Front
and Surface Profile Height in Laser Cutting of
Austenite Stainless Steel”, Lasers in
Engineering, Cilt 12, No, 59-80, 2002.
6. Yilbas, B. S., “Effect of Process Parameters on
the Kerf Width during the Laser Cutting
Process”, Proc. Inst. Mech. Eng. Part C: J.
Eng. Manuf., Cilt 215, 1357-1365, 2001.
7. Uslan, İ., “CO2 Laser Cutting: Kerf Width
Variation During Cutting”, Proceedings of the
Institution of Mechanical Engineers B,
Journal of Engineering Manufacture, Cilt 219,
No B18, 571-577, 2005.
8. Meurling, F., Melander, A., Linder, J. ve Larsson,
M., “The Influence of Mechanical and Laser
Cutting on the Fatigue Strengths of Carbon and
Stainless Sheet Steels”, Scandinavian Journal
of Metallurgy, Cilt 30, No 5, 309-319, 2001.
9. Kaplan, A. F. H., “An Analytical Model of Metal
Cutting with A Laser Beam”, Journal of
Applied Physics, Cilt 79, No 5, 2198-2208,
1996.
10. Yilbas, B. S., “Laser Cutting Quality Assessment
and Thermal Efficiency Analysis”, Journal of
Materials Processing Technology, Cilt 155-156,
2106-2115, 2004.
11. Karataş, Ç., Keleş, Ö., Uslan, İ. ve Usta, Y.,
“Laser Cutting of Steel Sheets: Influence of
Workpiece Thickness and Beam Waist Position
on Kerf Size and Stria Formation”, Journal of
Materials Processing Technology, Cilt 172, 22-
29, 2006.
12. Rajaram, N., Sheikh-Ahmad, J. ve Cheraghi, S.
H., “CO2 Laser Cut Quality of 4130 Steel”,
International Journal of Machine Tools and
Manufacture, Cilt 43, No 4, 351-358, 2003.
13. Eltawahni, H.A., Hagino, M., Benyounis, K.Y.,
Inoue, T. ve Olabi, A.G. “Effect of CO2 Laser
Cutting Process Parameters on Edge Quality and
Operating Cost of AISI316L”, Optics and Laser
Technology, Cilt 44, 1068-1082, 2012.
14. Motorcu, A. R., “Determination of the
Parameters Providing Optimum Tool Life by
Taguchi Technique and Observation of Tool
Wear in the Machining of AISI1050 and
AISI4140 Steels with the Ceramic Cutting
Tools”, Journal of The Faculty of Engineering
and Architecture of Gazi University, Cilt 24,
No 4, 699-708, 2009.
15. Bystronic Lazer AG, Byspeed Kullanma
Kılavuzu, İsviçre, 229-231, 2002.
16. Akman, G. ve Özkan, C., “Sac İmalatında
Karşılaşılan Yapışma Probleminin Deney
Tasarımı ile Çözümü”, Doğuş Üniversitesi
Dergisi, Cilt 12, No 2, 187-199, 2011.
17. Breyfoglef, W., Implementing Six Sigma:
Smarter Solutions Using Statistical Methods,
2nd ed., John Wiley & Sons, New York, ABD,
2003.
18. Lazic´, Z.R., Design of Experiments in
Chemical Engineering: A Practical Guide,
Wiley-VCH, Weinheim, Germany, 2004.
19. Liu, K.W. ve Sheng, P.S., "Dynamic Effects of
Circular and Non-Circular Laser Shaping",
Journal of Materials Processing Technology,
Cilt 71, No 2, 267-279, 1997.
20. Li, L., Sobih, M. ve Crouse, P.L., "Striation-free
Laser Cutting of Mild Steel Sheets", CIRP
Annals-Manufacturing Technology, Cilt 56, No
1, 193-196, 2007.
21. Lamikiz, A., López de Lacalle, L.N., Sánchez,
J.A., Pozo, D.,Etayo, J.M. ve López, J.M., "CO2
Laser Cutting of Advanced High Strength Steels
(AHSS)", Applied Surface Science, Cilt 242, No
3-4, 15, 362-368, 2005.
22. Çaydaş, U. ve Hasçalık, A., "Use of the Grey
Relational Analysis to Determine Optimum Laser
Cutting Parameters with Multi-Performance
Characteristics", Optics and Laser Technology,
Cilt 40, No 7, 987-994, 2008.
23. Pandey, A.K. ve Dubey, A.K., "Taguchi Based
Fuzzy Logic Optimization of Multiple Quality
Characteristics in Laser Cutting of Duralumin
Sheet", Optics and Lasers in Engineering, Cilt
50, No 3, 328-335, 2012.
24. Rao, R. ve Yadava, V., Multi-objective
Optimization of Nd:YAG Laser Cutting of Thin
Superalloy Sheet Using Grey Relational Analysis
with Entropy Measurement", Optics and Laser
Technology, Cilt 41, 922-930, 2009.
25. Dubey, A.K. ve Yadava, V., Multi-objective
Optimization of Nd:YAG Laser Cutting of
Nickel-Based Superalloy Sheet Using Orthogonal
Array with Principal Component Analysis",
Optics and Lasers in Engineering, Cilt 46, 124-
132, 2008.
26. Sheng, P.S. ve Cai, P.L., "Predictive Process
Planning for Laser Cutting", Journal of
Manufacturing Systems, Cilt 17, No 2, 144-158,
1998.
27. Sheng, P.S. ve Joshi, V.S., "Analysis of Heat-
Affected Zone Formation for Laser Cutting of
Stainless Steel", Journal of Materials
Processing Technology, Cilt 53, 879-892, 1995.

Thank you for copying data from http://www.arastirmax.com